
 GIT $ git init
$ git add .
$ git commit -m "Initial commit"

 GIT $ git status
$ git diff

 GIT $ git log

 GIT $ git commit -a -m "message"

 GIT $ git add <file1> <file2>
$ git add -p <file3>

 GIT $ git clone
ssh://git@example.com/path/to/git-repo.git

 GIT $ git add <file>
$ git rm <file>

 SUBVERSION $ svnadmin create /path/to/repo
$ svn import /path/to/local/project http://

example.com/svn/ trunk -m "Initial import"

 SUBVERSION $ svn status
$ svn diff | less

 SUBVERSION $ svn log | less

 SUBVERSION $ svn commit -m "message"

 SUBVERSION $ svn checkout
svn+ssh://svn@example.com/svn/trunk

 SUBVERSION $ svn add <file>
$ svn rm <file>

Creating a New Repository
With git init , an empty repository is created in the current

folder of your local hard drive. The git add command then marks

the current contents of your project directory for the next (and in

this case: first) commit.

Committing Local Changes
Inspecting your current local changes is very similar in both systems.

Inspecting History
To inspect historic commits, both systems use the log command.

Keep in mind, however, that git log doesn’t need to ask the

remote server for data: your project’s history is already at hand,

saved in your local repository.

In case you’ve created new files or deleted old ones, you should tell

Git with the git add and git rm commands. You’ll be pleased

to hear that it’s safe to inform Git after deleting or moving a file

or even a folder. This means you should feel free to delete or move

even complete directory structures in your favorite editor, IDE, or

file browser and later confirm the action with the add and rm|

commands.

In its simplest form, committing can feel just like in Subversion.

With the -a option, you tell Git to simply add all current local

changes to the commit.

Although short-circuiting Git’s staging area like this can make

sense, you’ll quickly begin to love it once you understand how

valuable it is:

You can add selected files to the staging area and even limit this to

certain parts (or even lines) of a file by specifying the -p option.

This allows you to craft your commits in a very granular way and

only add changes that belong to the same topic in a single commit.

Cloning a Remote Repository
Getting a copy of the project from a remote server seems almost

identical. However, after performing git clone , you have a

full-blown local repository on your machine, not just a working

copy.

the most powerful Git client for Mac

GIT FOR SUBVERSION USERS
presented by TOWER — the most powerful Git client for Mac

30-day free trial available at
www.git-tower.com

http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website

GIT FOR SUBVERSION USERS

the most powerful Git client for Mac

30-day free trial available at
www.git-tower.com

 GIT $ git branch <new-branch>

 GIT $ git merge <other-branch>

 GIT $ git checkout <branch>

 GIT $ git tag -a <tag-name>

 GIT $ git branch

 GIT $ git add <file>

 GIT $ git pull

 GIT $ git push <remote> <branch>

 GIT $ git checkout --track <remote>/<branch>

 GIT $ git fetch

 SVN $ svn copy http://example.com/svn/trunk/
http://example.com/svn/branches/<new-branch>

 SUBVERSION $ svn merge -r REV1:REV2
http://example.com/svn/branches/<other-branch>

$ svn merge (or in newer SVN versions)
http://example.com/svn/branches/<other-branch>

 SUBVERSION $ svn switch
http://example.com/svn/branches/<branch>

 SVN $ svn copy http://example.com/svn/trunk/
http://example.com/svn/tags/<tag-name>

 SVN $ svn list http://example.com/svn/branches/

 SUBVERSION $ svn resolved <file>

 SUBVERSION $ svn update

 SUBVERSION $ svn switch
http://example.com/svn/branches/<branch>

Branching & Tagging
In contrast to Subversion, Git doesn’t use directories to manage

branches. Instead, it uses a more powerful and lightweight approach.

As you might have already noticed, the git status command

also informs you about which branch you are currently working on.

And in Git, you are always working on a branch!

Merging Changes
Like in newer versions of SVN, you only need to provide the branch

you want to integrate to the git merge command.

Sharing & Collaborating
To download & integrate new changes from a remote server, you

use the git pull command.

To switch to a different branch and make it active (then also

referred to as the HEAD branch), the git checkout command

is used. Because switching can take some time in Subversion, it’s

not unusual to instead have multiple working copies on your disk.

In Git, this would be extremely uncommon: since operations are

very fast, you only keep a single local repository on your disk.

Everything else is taken care of for you: you can merge two

branches as often as you like, don’t have to specify any revisions

and can expect the operation to be blazingly fast if you’re merging

two local branches.

If a merge conflict should occur, Git will already update the rest

of the working copy to the new state. After resolving a conflicted

file, you can mark it using the git add command.

If you only want to download & inspect remote changes (before

integrating them), you can use git fetch . Later, you can

integrate the downloaded changes via git merge .

In Subversion, data is automatically uploaded to the central server

when committing it. In Git, however, this is a separate step. This

means you can decide for yourself if and when you want to share

your work. Once you’re ready, the git push command will upload

the changes from your currently active branch to the remote

branch you specify.

Your teammates, too, will publish their work like this on a remote

(with the git push command). If you want to start working on

such a branch, you need to create your own local copy of it. You can

use the git checkout command with the --track option to do

just that: create a local version of the specified remote branch.

You can later share the additional commits you’ve made at any

time with the git push command, again.

Listing all available local branches just requires the git branch|
command without further arguments.

Creating tags is just as quick & cheap as creating branches.

http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website
http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=gitforsvn+cheat+sheet+pdf&utm_content=english+version&utm_campaign=Tower+website

