
Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Syntax for a standalone application in Java:

class <classname>
{

public static void main(String args[])
 {
 statements;
 ————————;
 ————————;
 }
}

Steps to run the above application:

1. Type the program in the DOS editor or notepad. Save the
 file with a .java extension.
2. The file name should be the same as the class, which has the
 main method.
3. To compile the program, using javac compiler, type the
 following on the command line:
 Syntax: javac <filename.java>
 Example: javac abc.java
4. After compilation, run the program using the Java
 interpreter.
 Syntax: java <filaname> (without the .java
 extension)
 Example: java abc
5. The program output will be displayed on the command line.

 Java reserved words:

 abstract default if package this
 boolean do implements private throw
 Break double import protected throws
 Byte else instanceof public transient

 case extends int return null
 try Const for new switch
 continue while goto synchronized super

 Catch final interface short void
 char finally long static volatile
 class float native

Java naming conventions:

Variable Names: Can start with a letter, ‘$’ (dollar symbol),
or ‘_’ (underscore); cannot start with a number; cannot be a
reserved word.

Method Names: Verbs or verb phrases with first letter in
lowercase, and the first letter of subsequent words
capitalized; cannot be reserved words.
Example: setColor()

Class And Interface Names: Descriptive names
that begin with a capital letter, by convention; cannot be a
reserved word.

Constant Names: They are in capitals.
Example: Font.BOLD, Font.ITALIC

Java Comments:

Delimiters Use
// Used for commenting a single line

/* ————— */ Used for commenting a block of code

/** —————*/ Used for commenting a block of code.
 Used by the Javadoc tool for
 generating Java documentation.

Primitive datatypes in Java:

DataType Size Default Min Value
 Max Value

 byte
 (Signed -128
 integer) 8 bits 0 +127

short
 (Signed -32,768
 integer) 16 bits 0 +32,767

int
 (Signed -2,147,483,648
 integer) 32 bits 0 +2,147,483,647

long -9, 223, 372,036,854,

 (Signed 775,808,

Integer) +9,223,372,036,

 64 bits 0 854, 775, 807

 float 32 bits 0.0 1.4E-45
 (IEEE 754 3.4028235E38
 floating-point)

 double 64 bits 0.0 4.9E-324
 (IEEE 754 1.7976931348623157E308
 floating-point)

 char 16 bits \u0000 \u0000
 (Unicode
 character) \uFFFF

 boolean 1 bit false

 Variable Declaration:
<datatype> <variable name>
Example: int num1;

Variable Initialization:
<datatype> <variable name> = value
Example: double num2 = 3.1419;

Escape sequences:
 Literal Represents

\n New line
\t Horizontal tab

 \b Backspace
\r Carriage return

1 3

2 4

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

 \f Form feed
\\ Backslash
\” Double quote
\ddd Octal character
\xdd Hexadecimal character
\udddd Unicode character

Arrays: An array which can be of any datatype, is created in
two steps – array declaration and memory allocation.

Array declaration
<datatype> [] <arr ```````````ayname>;
Examples int[] myarray1;
 double[] myarray2;
Memory Allocation
The new keyword allocates memory for an array.
Syntax
<arrayname> = new <array type> [<number of
elements>];
Examples
myarray1 = new int[10];
Myarray2 = new double[15];

Multi-dimensional arrays:

Syntax:
<datatype> <arrayname> [] [] = new <datatype>
[number of rows][number of columns];
Example:
int mdarray[][] = new int[4][5];

Flow Control:

 1. If……..else statements
 Syntax:
 if(condition)
 {
 statements;
 }
 else
 {
 statements;
 }

 2. For loop
 Syntax:
 for(initialization; condition; increment)
 {

 statements;
}

 3. While loop
Syntax:
while(condition)
{
 statements;
}

 4. Do….While loop
Syntax:
do
{
 statements;
}
while(condition);

 5. Switch statement
 Syntax:
 switch(variable)
 {
 case(value1):
 statements;
 break;
 case(value2):
 statements;
 break;
 default:
 statements;
 break;
 }

Class Declaration: A class must be declared using the
keyword class followed by the class name.
Syntax
class <classname>
{
 ———— Body of the class

A typical class declaration is as follows:
<modifier> class <classname> extends
<superclass name> implements <interface name>
{
 —————Member variable declarations;
 —————Method declarations and definitions
}

Member variable declarations:

<access specifier> <static/final/transient/
volatile> <datatype> <variable name>
Example public final int num1;

Method declarations:

<access specifier> <static/final> <return type>
<method name> <arguments list>
{
 Method body;
}
Example public static void main(String args[])
 {
 }

Interface declaration: Create an interface. Save the file
with a.java extension, and with the same name as the
interface. Interface methods do not have any implementation
and are abstract by default.

Syntax
 interface <interface name>
 {
 void abc();
 void xyz();
 }

Using an interface: A class implements an interface with the
implements keyword.

5 7

6 8

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Syntax
class <classname> extends <superclass name>
implements <interface name>
{
 class body;
 —————————;
}

 Creating A Package:

1. Identify the hierarchy in which the .class files have to
be organized.

2. Create a directory corresponding to every package, with
names similar to the packages.

3. Include the package statement as the first statement in
the program.

4. Declare the various classes.
5. Save the file with a .java extension.
6. Compile the program which will create a .class file in

the same directory.
7. Execute the .class file.

 Packages and Access Protection:

Accessed Public Protected Package Private

From the
 same class ? Yes Yes Yes Yes

 From a non
 subclass in
 the same
 package ? Yes Yes Yes No

 From a non
 subclass
 outside the
 package? Yes No No No

From a
subclass
in the same
package? Yes Yes Yes No

From a
subclass
outside the
package ? Yes Yes No No

Attribute modifiers in Java:

Modifier Acts on Description
abstract Class Contains abstract
 methods.Cannot

 be instantiated.

 Interface All interfaces are implicitly
 abstract. The modifier is
 optional.

 Method Method without a body.
 Signature is followed by a
 semicolon. The class must also
 be abstract.

final Class Cannot be subclassed.

Method Cannot be overridden.

 Variable Value cannot be changed
(Constant)

native Method Implemented in a language
other than Java like C,C++,
assembly etc. Methods do not
have bodies.

static Method Class method. It cannot refer to
nonstatic variables and methods
of the class. Static methods are
implicitly final and invoked
through the class name.

Variable Class variable. It has only one
copy regardless of how many
instances are created. Accessed
only through the class name.

synchronized Method A class which has a synchronized
method automatically acts as a
lock. Only one synchronized
method can run for each class.

 List of exceptions in Java(part of java.lang package):

 Essential exception classes include -

Exception Description

ArithmeticException Caused by exceptional
 conditions like divide by

 zero

ArrayIndexOfBounds Thrown when an array is
Exception accessed beyond its bounds

ArrayStoreException Thrown when an incompatible
 type is stored in an array

ClassCastException Thrown when there is an invalid
 cast

IllegalArgument Thrown when an inappropriate
Exception argument is passed to a method

IllegalMonitorState Illegal monitor operations such as
Exception waiting on an unlocked thread

IllegalThreadState Thrown when a requested
Exception operation is incompatible with

 the current thread state.

IndexOutOfBounds Thrown to indicate that an index
Exception is out of range.

NegativeArraySize Thrown when an array is created
Exception with negative size.

9 11

10 12

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a
 number.

SecurityException Thrown when security is violated.

ClassNotFound Thrown when a class is not found.
Exception

CloneNotSupported Attempt to clone an object that
Exception does not implement the Cloneable
 interface.

 IllegalAccess Thrown when a method does not
 Exception have access to a class.

 Instantiation Thrown when an attempt is made
Exception to instantiate an abstract class or

 an interface.

 InterruptedException Thrown when a second thread
 interrupts a waiting, sleeping, or

 paused thread.

The java.lang.Thread class

The Thread class creates individual threads. To create a thread
either (i) extend the Thread class or (ii) implement the Runnable
interface. In both cases, the run() method defines operations

performed by the thread.

Methods of the Thread class:

 Methods Description

 run() Must be overridden by
Runnable object; contains code
that the thread should perform

 start() Causes the run method to
execute and start the thread

 sleep() Causes the currently executing
thread to wait for a specified time
before allowing other threads to
execute

 interrupt() Interrupts the current thread

 Yield() Yields the CPU to other runnable
threads

 getName() Returns the current thread’s name

 getPriority() Returns the thread’s priority as an
integer

 isAlive() Tests if the thread is alive; returns
a Boolean value

 join() Waits for specified number of
milliseconds for a thread to die

 setName() Changes the name of the thread

 setPriority() Changes the priority of the thread

 currentThread() Returns a reference to the
currently executing thread

 activeCount() Returns the number of active
 threads in a thread group

 Exception Handling Syntax:

 try
 {
 //code to be tried for errors
 }
 catch(ExceptionType1 obj1)
 {
 //Exception handler for ExceptionType1
 }
 catch(ExceptionType2 obj2)
 {
 //Exception handler for ExceptionType2
 }
 finally{
 //code to be executed before try block ends.
 This executes whether or not an //
 exception occurs in the try block.

 }

 I/O classes in Java (part of the java.io package):

 I/O class name Description

 BufferedInputStream Provides the ability to buffer the

 input. Supports mark() and
 reset() methods.

 BufferedOutputStream Provides the ability to write bytes
 to the underlying output stream
 without making a call to the
 underlying system.

BufferedReader Reads text from a character
input stream

BufferedWriter Writes text to character
output stream

DataInputStream Allows an application to read
primitive datatypes from an
underlying input stream

DataOutputStream Allows an application to write
primitive datatypes to an output
stream

File Represents disk files and
directories

FileInputStream Reads bytes from a file in a file
system

FileOutputStream Writes bytes to a file
ObjectInputStream Reads bytes i.e. deserializes

objects using the
readObject() method

ObjectOutputStream Writes bytes i.e. serializes
objects using the
writeObject() method

PrintStream Provides the ability to print
different data values in an
efficient manner

RandomAccessFile Supports reading and writing to
a random access file

13 15

 14 16

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

StringReader Character stream that reads
from a string

StringWriter Character stream that writes to
a StringBuffer that is later
converted to a String

The java.io.InputStream class: The InputStream class is
at the top of the input stream hierarchy. This is an abstract class
which cannot be instantiated. Hence, subclasses like the
DataInputStream class are used for input purposes.

 Methods of the InputStream class:

 Method Description
available() Returns the number of bytes that can be

read

close() Closes the input stream and releases
associated system resources

mark() Marks the current position in the input
stream

mark
Supported() Returns true if mark() and reset() methods

are supported by the input stream

read() Abstract method which reads the next byte
ofdata from the input stream

read(byte b[]) Reads bytes from the input stream and
stores them in the buffer array

skip() Skips a specified number of bytes from the
input stream

The java.io.OutputStream class: The OutputStream class
which is at the top of the output stream hierarchy, is also an
abstract class, which cannot be instantiated. Hence, subclasses
like DataOutputStream and PrintStream are used for
output purposes.

 Methods of the OutputStream class:

Method Description

close() Closes the output stream, and releases
associated system resources

write(int b) Writes a byte to the output stream

write(byte b[]) Writes bytes from the byte array to the
output stream

flush() Flushes the ouput stream, and writes
buffered output bytes

 java.io.File class: The File class abstracts information
about files and directories.

Methods of the File class:

Method Description

exists() Checks whether a specified file exists

getName() Returns the name of the file and directory
denoted by the path name

isDirectory() Tests whether the file represented by the
pathname is a directory

lastModified() Returns the time when the file was last
modified

l length() Returns the length of the file represented by
the pathname

listFiles() Returns an array of files in the directory
represented by the pathname

 setReadOnly() Marks the file or directory so that only
 read operations can be performed

 renameTo() Renames the file represented by the
pathname

 delete() Deletes the file or directory represented by
the pathname

 canRead() Checks whether the application can read
from the specified file

 canWrite() Checks whether an application can write to
a specified file

 Creating applets:

1. Write the source code and save it with a .java
extension

2. Compile the program
3. Create an HTML file and embed the .class file with the

<applet> tag into it.
4. To execute the applet, open the HTML file in the browser

or use the appletviewer utility, whch is part of the Java
Development Kit.

The <applet> tag: Code, width , and height are
mandatory attributes of the <applet> tag. Optional attributes
include codebase, alt,name, align, vspace, and
hspace . The code attribute takes the name of the class file as
its value.
Syntax:
<applet code = “abc.class” height=300
width=300>
<param name= parameterName1 value= value1 >
<param name= parameterName2 value= value2 >
</applet>

Using the Appletviewer: Appletviewer.exe is an
application found in the BIN folder as part of the JDK. Once an
HTML file containing the class file is created (eg. abc.html) ,
type in the command line:
Appletviewer abc.html

 java.applet.Applet class:

 Methods of the java.applet.Applet class:

Method Description

init() Invoked by the browser or the
applet viewer to inform that the
applet has been loaded

start() Invoked by the browser or the
applet viewer to inform that
applet execution has started

stop() Invoked by the browser or the
applet viewer to inform that
applet execution has stopped

17 19

18 20

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

destroy() Invoked by the browser or the
appletviewer to inform that the
applet has been reclaimed by the
Garbage Collector

getAppletContext() Determines the applet context or
the environment in which it runs

getImage() Returns an Image object that can
be drawn on the applet window

getDocumentBase() Returns the URL of the HTML page
that loads the applet

getCodeBase() Returns the URL of the applet’s
class file

getParameter() Returns the value of a named
applet parameter as a string

showStatus() Displays the argument string on
the applet’s status

java.awt.Graphics class: The Graphics class is an
abstract class that contains all the essential drawing methods
like drawLine(), drawOval(), drawRect() and so on. A
Graphics reference is passed as an argument to the paint()
method that belongs to the java.awt.Component class.

 Methods of the Graphics class:

Method Description
drawLine() Draws a line between (x1,y1) and

(x2,y2) passed as parameters
drawRect()/fillRect() Draws a rectangle of specified

width and height at a specified

 location

drawOval()/fillOval() Draws a circle or an ellipse that
fills within a rectangle of specified
coordinates

drawString() Draws the text given as a
specified string

drawImage() Draws the specified image onto
the screen

 drawPolygon()
 /fillPolygon() Draws a closed polygon defined
 by arrays of x and y coordinates

setColor() Sets the specified color of the
 graphics context

setFont() Sets the specified font of the
 graphics context

 java.awt.Component class: The Component class is an
abstract class that is a superclass of all AWT components. A
component has a graphical representation that a user can
interact with. For instance, Button, Checkbox,
TextField , and TextArea.

 Methods of the Component class:

 Method Description

 paint(Graphics g) Paints the component. The
Graphics context g is used for
painting.

setBackground() Sets the background color of the
component

setForeground() Sets the foreground color of the
component

SetSize() Resizes the component
setLocation() Moves the component to a new

location
setBounds() Moves the component to specified

location and resizes it to the
specified size

addFocusListener() Registers a FocusListener
object to receive focus events
from the component

addMouseListener() Registers a MouseListener
object to receive mouse events
from the component

addKeyListener() Registers a KeyListener object
to receive key events from the
component

getGraphics() Returns the graphics context of
this component

update(Graphics g) Updates the component. Calls the
paint() method to redraw the
component.

 AWT Components: Many AWT classes like Button,
Checkbox, Label, TextField etc. are subclasses of the
java.awt.Component class. Containers like Frame and
Panel are also subclasses of components, but can additionally
hold other components.

 Label:

 Constructors
· Label() - Creates an empty label
· Label(String s) - Creates a label with left

justified text string
· Label (String s, int alignment) - Creates

a label with the specified text and specified aligment.
Possible values for alignment could be Label.RIGHT,
Label.LEFT , or Label.CENTER

 Methods of the Label class:

Method Description

getAlignment() Returns an integer representing
the current alignment of the Label.
0 for left, 1 for center, and 2 for
right alignment.

setAlignment() Sets the alignment of the Label to
the specified one

getText() Returns the label’s text as a
string

setText() Sets the label’s text with the
specified string

Button:

Constructors

Button() - Creates a button without a label
Button(String s) - Creates a button with the specified
label

21 23

22 24

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

 Methods of the Button class:

Method Description
addActionListener() Registers an ActionListener

object to receive action events
from the button

getActionCommand() Returns the command name of
the action event fired by the
button. Returns the button label
if the command name is null.

GetLabel() Returns the button’s label

SetLabel() Sets the button’s label to the
specified string

Checkbox:

Constructors

· Checkbox() - Creates a checkbox without any label
· Checkbox(String s) - Creates a checkbox with a

specified label
· Checkbox(String s, boolean state) - Creates

a checkbox with a specified label, and sets the specified
state

· Checkbox(String s, boolean state,
CheckboxGroup cbg) - Creates a checkbox with a
specified label and specified state, belonging to a
specified checkbox group

Methods of the Checkbox class:

Method Description

addItemListener() Registers an ItemListener
object to receive item events from
the checkbox

getCheckboxGroup() Returns the checkbox’s group

 getLabel() Returns the checkbox’s label

 getState() Determines if the checkbox
 is checked or unchecked

 setLabel() Sets the label of the check box
 with the specified string

 setState() Sets the specified checkbox state

 Creating Radio Buttons (Mutually exclusive checkboxes):

· First create a CheckboxGroup instance –
CheckboxGroup cbg = new CheckboxGroup();

· While creating the checkboxes, pass the checkbox group
object as an argument to the constructor - Checkbox
(String s, boolean state, CheckboxGroup
cbg)

 Choice:

 Constructors

Choice() - Creates a new choice menu, and presents a pop-
up menu of choices.

Methods of the Choice class:

Method Description

add() Adds an item to a choice menu

addItem() Adds an item to a choice menu

addItemListener() Registers an ItemListener object
to receive item events from the
Choice object

getItem() Returns the item at the specified
index as a string

getItemCount() Returns the number of items in the
choice menu

getSelectedIndex() Returns the index number of the
currently selected item

getSelectedItem() Returns the currently selected item
as a string

insert() Inserts a specified item at a specified
index position

remove() Removes an item from the choice
menu at the specified index

TextField:

Constructors

· TextField() - Creates a new text field
· TextField(int cols) - Creates a text field with the
 specified number of columns
· TextField(String s) – Creates a text field initialized with
 a specified string
· TextField(String s, int cols) - Creates a text field
 initialized with a specified string that is wide enough to hold a
 specified number of columns

Methods of the TextField class:

Method Description

isEditable() Returns a boolean value indicating
whether or not a text field is
editable

setEditable() Passing True enables text to be
edited, while False disables
editing. The default is True.

addActionListener() Registers an ActionListener
object to receive action events
from a text field

getEchoChar() Returns the character used for
echoing

getColumns() Returns the number of columns
in a text field

25 27

26 28

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

setEchoChar() Sets the echo character for a text
field

getText() Returns the text contained in the
text field

setText() Sets the text for a text field

TextArea:

Constructors

· TextArea() - Creates a new text area
· TextArea(int rows, int cols) - Creates a new
 empty text area with specified rows and columns
· TextArea(String s) – Creates a new text area with the
 specified string
· TextArea(String s, int rows, int cols) - Creates
 a new text area with the specified string and specified rows
 and columns.
· TextArea(String s, int rows, int cols, int
 scrollbars) - Creates a text area with the specified text,
 and rows, columns, and scrollbar visibility as specified.

Methods of the TextArea class:

Method Description

getText() Returns the text contained in the
text area as a string

setText() Sets the specified text in the text
area

getRows() Returns the number of rows in the

 text area
getColumns() Returns the number of columns in

 the text area

 selectAll() Selects all the text in the text area

 setEditable() A True value passed as an
 argument enables editing of the
 text area, while False disables
 editing. It is True by default.

List:

Constructors

· List() - Creates a new scrolling list
· List(int rows) - Creates a new scrolling list with a
 specified number of visible lines
· List(int rows, boolean multiple) - Creates a
 scrolling list to display a specified number of rows. A True
 value for Multiple allows multiple selection, while a False
 value allows only one item to be selected.

Methods of the List class:

Method Description

add() Adds an item to the end of the
scrolling list

addItemListener() Registers an ItemListener
object to receive Item events from
a scrolling list

deselect() Deselects the item at the specified
index position

getItem() Returns the item at the specified
index position

getItemCount() Returns the number of items in the
list

getSelectedIndex() Returns the index position of the
selected item

getSelectedItem() Returns the selected item on the
scrolling list

isMultipleMode() Determines if the scrolling
list allows multiple selection

remove() Removes a list item from a
specified position

setMultipleMode() Sets a flag to enable or disable
multiple selection

Scrollbar:

Constructors

· Scrollbar() - Creates a new vertical scroll bar
· Scrollbar(int orientation) - Creates a new scroll
 barwith a particular orientation, which is specified as
 Scrollbar.HORIZONTAL or Scrollbar.VERTICAL

 · Scrollbar(int orientation, int value,
 int visible, int minimum, int maximum)- Creates

 a new scroll bar with the specified orientation, initial value,
 thumb size, minimum and maximum values

Methods of the Scrollbar class:

Method Description

addAdjustmentListener() Registers an
adjustmentListener object
to receive adjustment
events from a scroll bar

getBlockIncrement() Returns the block
increment of a scrollbar
as an integer.

getMaximum() Returns the maximum
value of a scrollbar as an
integer

getMinimum() Returns the minimum
value of a scrollbar as an
integer

getOrientation() Returns the orientation of
a scrollbar as an integer

 getValue() Returns the current value
of a scrollbar as an integer

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

setOrientation() Sets the orientation of a scrollbar
setValue() Sets the current value of a

scrollbar
setMinimum() Sets the minimum value of a

scrollbar
setMaximum() Sets the maximum value of a

scrollbar

Frame:

Constructors

· Frame() - Creates a new frame without any title
· Frame(String s) - Creates a new frame with the
 specified title

Menus:

· Can be added only to a frame
· A MenuBar instance is first created as:
 MenuBar mb = new MenuBar();
· The MenuBar instance is added to a frame using the
 setMenuBar() method of the Frame class as follows:
 setMenuBar(mb);
· Individual menus are created (instances of the Menu class)
 and added to the menu bar with the add() method

Dialog: Direct subclass of java.awt.Window, which accepts
user input.

 Constructors

· Dialog(Frame parent, boolean modal) – Creates a
 new initially invisible Dialog attached to the frame object
 parent. The second argument specifies whether the dialog
 box is Modal or Non-modal.
· Dialog (Frame parent, String s, boolean modal)
 – Same as the above. The second argument specifies the title
 of the dialog box.

FileDialog: Direct subclass of Dialog, which displays a dialog
window for file selection.

Constructors

· FileDialog(Frame f, String s) - Creates a new
 dialog for loading files(file open dialog) attached to the frame
 with the specified title
· FileDialog(Frame f, String s, int i) - Creates a
 file dialog box with the specified title. The third argument
 specifies whether the dialog is for loading a file or saving a file.
 The value of i can be either FileDialog.LOAD or

 FileDialog.SAVE

AWT Event Listener interfaces: For every AWT event class
there is a corresponding event-listener interface, which is a part
of the java.awt.event package and provides the event-
handling methods.

ActionListener interface: Implemented by a class that
handles an action event. The method actionPerformed()
must be overridden by the implementing class.

Interface method Description

actionPerformed() Invoked whenever an ActionEvent
object is generated (button is
clicked)

TextListener interface: Implemented by a class to handle
text events. Whenever the text value of a component changes,
an interface method called textValueChanged is invoked,
which must be overridden in the implementing class.

Interface method Description

textValueChanged() Invoked whenever a Text
Event object is generated (text
value changes)

AdjustmentListener interface: Implemented by a class that
handles adjustment events. The method
adjustmentValueChanged() , overridden by the
implementing class is invoked everytime an AdjustmentEvent
object occurs (when a scrollbar is adjusted).

Interface method Description
adjustmentValueChanged() Invoked whenever an

AdjustmentEvent object is
generated (when a scrollbar
thumb is adjusted)

ItemListener interface: Implemented to handle state change
events. The method itemStateChanged() must be overridden
by the implementing class.

Method Description
itemStateChanged() Invoked whenever an ItemEvent

object is generated (a checkbox is
checked, an item is selected from a
choice menu, or an item is selected
froma list)

FocusListener interface: Implemented to receive
notifications whenever a component gains or loses focus. The
two methods to be overridden are focusGained() and
focusLost() . The corresponding adapter class is
FocusAdapter .

Method Description

focusGained() Invoked whenever a component
 gains keyboard focus
focusLost() Invoked whenever a component
 loses keyboard focus

KeyListener interface: Implemented to handle key events.
Each of the three methods – keyPressed(),
keyReleased(), keyTyped() – receives a KeyEvent
object when a key event is generated.

Method Description

KeyPressed() Invoked whenever a key is
 pressed

keyReleased() Invoked whenever a key is
 released

33 35

36

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

 keyTyped() Invoked whenever a key is typed

MouseListener interface: Implemented by a class handling
mouse events. It comprises of five methods invoked when a
MouseEvent object is generated. Its corresponding adapter
class is the MouseAdapter class.

Method Description

mouseClicked() Invoked when mouse is clicked
 on a component

mouseEntered() Invoked when mouse enters a
 component

mouseExited() Invoked when mouse exits a
 component

mousePressed() Invoked when mouse button is
 pressed on a component

mouseReleased() Invoked when mouse button is
 released on a component

MouseMotionListener interface: Implemented by a class
for receiving mouse-motion events. Consists of two methods –
mouseDragged() and mouseMoved(), which is invoked
when a MouseEvent object is generated.
MouseMotionAdapter is its corresponding adapter class.

Method Description

mouseDragged() Invoked when the mouse is pressed on
a component and dragged

mouseMoved() Invoked when mouse is moved over
 a component

WindowListener interface: Implemented by a class to
receive window events. It consists of seven different methods to
handle the different kinds of window events, which are invoked
when a WindowEvent object is generated. Its corresponding
adapter class is the WindowAdapter class.

Method Description

windowOpened() Invoked when the window is
made visible for the first time

windowClosing() Invoked when the user attempts
to close the window from the
Windows system menu

windowClosed() Invoked when the window has
been closed as a result of calling
the dispose() method

windowActivated() Invoked when the window is
made active i.e. the window can
receive keyboard events

windowDeactivated() Invoked when the window is no
longer the active window i.e. the
window can no longer receive
keyboard events

windowIconified() Invoked when a normal window is
minimized

windowDeiconified() Invoked when a minimized
window is changed to normal
state

java.sql.Driver interface: Implemented by every driver
class.

Methods of the Driver interface:

Method Description

acceptsURL() Returns a Boolean value indicating
whether the driver can open a
connection to the specified URL

connect() Tries to make a database connection
to the specified URL

getMajorVersion() Returns the driver’s major version
number

getMinorVersion() Returns the driver’s minor version
number

jdbcCompliant() Tests whether the driver is a genuine
JDBC compliant driver

java.sql.Connection interface: Represents a session with a
specific database. SQL statements are executed within a session
and the results are returned.

Methods of the Connection interface:

Method Description

Close() Immediately releases the database
and JDBC resources

commit() Makes all changes since the last
commit/rollback permanent, and
releases the database locks held by
the connection

createStatement() Creates and returns a Statement
object. It is used for sending SQL
statements to be executed on the
database

getMetaData() Returns a DatabaseMetaData
object that represents metadata
about the database

isReadOnly() Checks whether the connection is a
read-only connection

prepareCall() Creates and returns a
Callable Statement object,

37 39

39 4

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

Java Programming Guide - Quick Reference

© 1999, Pinnacle Software Solutions Inc.

prepareCall() Creates and returns a
CallableStatement object
(used for calling database stored
procedures)

prepareStatement() Creates and returns a
PreparedStatement
object (used for sending
precompiled SQL statements to
the database)

rollback() Discards all the changes made
since the last commit/rollback
and releases database locks held
by the connection

setAutoCommit() Enables or disables the auto
commit feature. It is disabled by
default

java.sql.DriverManager class: Responsible for managing a
set of JDBC drivers. It attempts to locate and load the JDBC
driver specified by the getConnection() method.

Methods of the DriverManager class:

Method Description

getConnection() Attempts to establish a database
connection with the specified
database URL, and returns a
Connection object

getLoginTimeout() Returns the maximum number of
seconds a driver can wait when
attempting to connect to the
database

registerDriver() Registers the specified driver with
the DriverManager

setLoginTimeout() Sets the maximum number of
seconds a driver can wait when
attempting to connect to the
database

getDrivers() Returns an enumeration of all the
drivers installed on the system

getDriver() Returns a Driver object that
supports connection through a
specified URL

