
Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Welcome fellow Java enthusiasts!

This site grew out of a desire to store all the information I discovered in my study of the Java
Language in one easily accessible location and format.

If you're brand new to Java you may want to begin by working your way through a number of the
on-line tutorials. Click on Favourite Links and then choose Tutorials for a list of what's available
on the Web.

If you're studying for the Sun Certfied Java Programmer Exam (SCJP) click on SCJP2 Study
Notes. You'll find a collection of notes I made while studying for my own SCJP certification which
I'm happy to say I passed on December 14th, 2000.

All the best in your studies!

Jane

The Java Certification Web Ring

[Previous] [Next] [Random] [List Sites] [Join Ring]

Java Quick Reference

http://www.janeg.ca/ [15/03/2004 8:46:18 AM]

mailto:feedback@janeg.ca
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;id=39;prev
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;id=39;next
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;random
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;list
http://www.janeg.ca/ring.jsp

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

SCJP2 Study Notes
This section contains study notes for the Sun Certified Java 2 Programmer Exam (SCJP2).

The objectives are based on the Testing Objectives for the New Sun Certified Programmer for Java
2 Platform posted on Sun's site as of October 1st, 2000.

The exam consists of 59 questions. A passing mark of 61% is required. The time limit, originally
90 minutes, has now been increased to 120 minutes.

NEW 1.4 EXAM as of August, 2002

Sun introduced a new exam version in August, 2002. I've marked up my pages to indicate which
objectives have been dropped or added; and, where possible, provided a link to study materials
related to the new objectives.

!!! ALWAYS CHECK SUN'S SITE FOR THE LATEST OBJECTIVES !!!

Usage

use the menu on the left to navigate the various Certification Objective pages●

use the menu on the bottom of the Objective and note pages to navigate notes related to the
selected Objective

●

save and compile the Code Examples to see Java concepts in action●

Tips are things to be keep in mind when taking the exam●

Traps are things to watch out for when taking the exam●

Testing concepts

If you're having a problem with a concept, WRITE SOME CODE to test it! DO NOT
use an IDE! Compile all your test code from the command line; this ensures you'll see
all the errors the compiler may create.

Why get certfied?
Read an on-line article by David L. Hecksel and Marcus Green in The Certification Magazine

!!! Study Tip !!!
Visit JavaRanch on a regular basis!

It's the best site on the Web if you want to learn everything and anything about Java!

Pick up a good certification study guide. There are a number of excellent ones on the market, The
Complete Java 2 Certification Study Guide: Programmer's and Developers Exams (With CD-ROM)
a.ka. RHE is a favourite of many JavaRanchers.

Of course, I like the one I co-authored with my fellow JavaRanch moderators the best<g>

Java Quick Reference

http://www.janeg.ca/java2.html (1 of 2) [15/03/2004 8:46:20 AM]

mailto:feedback@janeg.ca
http://suned.sun.com/US/certification/java/index.html
http://www.certmag.com/issues/jul00/feature_hecksel-green.cfm
http://www.javaranch.com/
http://www.amazon.com/exec/obidos/ASIN/0782128254/electricporkchop
http://www.amazon.com/exec/obidos/ASIN/0782128254/electricporkchop

Mike Meyer's Java 2 Certification Passport
by Cindy Glass, Jane Griscti, Margarita Isayeva, Ajith Kallambella, and Kathy

Sierra

A concise, affordable and portable guide to Sun's Java 2 Exam 310-025

Errata Page

Best of luck in your studies!

Java Quick Reference

http://www.janeg.ca/java2.html (2 of 2) [15/03/2004 8:46:20 AM]

http://www.amazon.com/exec/obidos/ASIN/0072193662/electricporkchop
http://www.totalsem.com/errata_passport_java2.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals Certification Objectives
Identify correctly constructed source files, package declarations, import statements, class
declarations (of all forms including inner classes), interface declarations and
implementations (for java.lang.Runnable or other interfaces described in the test), method
declarations (including the main method that is used to start execution of a class), variable
declarations and identifiers.

●

State the correspondence between index values in the argument array passed to a main
method and command line arguments. Identify all Java programming language keywords and
correctly constructed identifiers.

●

State the effect of using a variable or array element of any kind when no explicit assignment
has been made to it.

●

State the range of all primitive data types and declare literal values for String and all
primitive types using all permitted formats, bases, and representations.

●

1.4 Exam Objectives
The objectives are basically the same; the first objective in 1.2 has been restated as:

Identify correctly constructed package declarations, import statments, class declarations (of
all forms including inner classes) interface declarations, method declarations (including the
main method that is used to start execution of a class), variable declarations and identifiers.

●

Identify classes that correctly implement an interface where that interface is either
java.lang.Runnable or a fully specifiec interface in the question.

●

The second 1.2 objective has been split with an additional note on 'keywords'

State the correspondence between index values in the argument array passed to a main
method and command line arguments.

●

Identify all Java programming language keywords. Note: There will not be any questions
regarding esoteric distinction between keywords and manifest constants.

●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals

http://www.janeg.ca/scjp/language.html [15/03/2004 8:46:20 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments Certification
Objectives
(1.4 Objectives are identical)

Determine the result of applying any operator, including assignment operators and
instanceof, to operands of any type, class, scope, or accessibility, or any combination of
these.

●

Determine the result of applying the boolean equals(Object) method to objects of any
combination of the classes java.lang.String, java.lang.Boolean, and java.lang.Object.

●

In an expression involving the operators &, |, &&, ||, and variables of known values state
which operands are evaluated and the value of the expression.

●

Determine the effect upon objects and primitive values of passing variables into methods and
performing assignments or other modifying operations in that method.

●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference

http://www.janeg.ca/scjp/operatorsAndAssignments.html (1 of 2) [15/03/2004 8:46:20 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

http://www.janeg.ca/scjp/operatorsAndAssignments.html (2 of 2) [15/03/2004 8:46:20 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling
Certification Objectives

Write code using if and switch statements and identify legal argument types for these
statements.

●

Write code using all forms of loops including labeled and unlabeled use of break and
continue, and state the values taken by loop control variables during and after loop
execution.

●

Write code that makes proper use of exceptions and exception handling clauses (try, catch,
finally) and declares methods and overriding methods that throw exceptions.

●

1.4 Exam: Additional objectives
Recognize the effect of an exception arising at a sepcified point in a code fragment. Note:
The exception may be a runtime exception, a checked exception, or an error (the code may
include try, catch, or finally clauses in any legitimate combination).

●

Write code that makes proper use of assertions, and distinguish appropriate from
inapporopriate uses of assertions.

●

Identify correct statements about the assertion mechanism.●

For additional study materials try:
 Sun: Programming with Assertions
 Developerworks: Working with Assertions
 JavaWorld: Understand the mechanics of ... new assertion facility

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference

http://www.janeg.ca/scjp/flow.html [15/03/2004 8:46:21 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://java.sun.com/j2se/1.4/docs/guide/lang/assert.html
http://www-106.ibm.com/developerworks/java/library/j-mer0219.html
http://www.javaworld.com/javaworld/jw-11-2001/jw-1109-assert.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Declarations and Access Control Certification
Objectives
(1.4 objectives are identical)

Write code that declares, constructs, and initializes arrays of any base type using any of the
permitted forms both for declaration and initialization.
(Covered under Language Fundamentals - Array Initialization)

●

Declare classes, inner classes, methods, instance variables, static variables, and automatic
(method local) variables making appropriate use of all permitted modifiers (such as public,
final, static, abstract, and so forth). State the significance of each of these modifiers both
singly and in combination, and state the effect of package relationships on declared items
qualified by these modifiers.

●

For a given class, determine if a default constructor will be created, and if so, state the
prototype of that constructor.
(Covered under Language Fundamentals - Constructors)

●

State the legal return types for any method given the declarations of all related methods in
this or parent class.
(Covered under Language Fundamentals - Method Declarations)

●

Additional References

Chapter 6 Objects and Classes from The Complete Java 2 Certification Stuyd Guide by
Simon Roberts, Philip Heller, Michael Ernest

●

Sun Tech Tip: Using Class Methods and Variables●

Sun Tech Tip: Global Variables●

Access
Modifiers

Special
Modifiers

this and super Scope Inheritance
Access
Control

Java Quick Reference

http://www.janeg.ca/scjp/declarations.html [15/03/2004 8:46:21 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://developer.java.sun.com/developer/Books/certification/page1.html
http://developer.java.sun.com/developer/TechTips/2000/tt0912.html#tip1
http://developer.java.sun.com/developer/TechTips/1997/tt0924.html#tip2

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Garbage Collection Certification Objectives
State the behaviour that is guaranteed by the garbage collection system, and write code that
explicitly makes objects eligible for collection.

●

1.4 Exam
The above objective has been expanded as:

State the behavior that is guaranteed by the garbage collection system.●

Write code that explicitly makes objects eligible for garbage collection.●

Recognize the point in a piece of source code at which an object becomes eligible for
garbage collection.

●

Behaviour Eligibility finalize()

Java Quick Reference

http://www.janeg.ca/scjp/gc.html [15/03/2004 8:46:21 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation Certification Objectives
(1.4 Objectives are identical)

State the benefit of encapsulation in object oriented design and write code that implements
tightly encapsulated classes and the relationships "is a" and "has a".

●

Write code to invoke overridden or overloaded methods and parental or overloaded
constructors; and describe the effect of invoking these methods.

●

Write code to construct instances of any concrete class including normal top level classes,
inner classes, static inner classes, and anonymous inner classes.

●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes Local Classes
Anonymous

Classes

Java Quick Reference

http://www.janeg.ca/scjp/overloading.html [15/03/2004 8:46:22 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads Certification Objectives
Write code to define, instantiate, and start new threads using both java.lang.Thread and
java.lang.Runnable.

●

Recognize conditions that might prevent a thread from executing.●

Write code using synchronized, wait, notify, or notifyAll, to protect against concurrent
access problems and to communicate between threads. Define the interaction between
threads and between threads and object locks when executing synchronized, wait, notify, or
notifyAll

●

1.4 Exam
The third 1.2 objective has been re-worded as:

Write code using synchronized wait, notify and notifyAll to protect against concurrent access
problems and to communicate between threads.

●

Define the interaction among threads and object locks when executing synchronized wait,
notify or notifyAll

●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference

http://www.janeg.ca/scjp/threads.html (1 of 2) [15/03/2004 8:46:22 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

http://www.janeg.ca/scjp/threads.html (2 of 2) [15/03/2004 8:46:22 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification Objectives
Write code using the following methods of the java.lang.Math class: abs, ceil, floor, max,
min, random, round, sin, cos, tan, sqrt.

●

Describe the significance of the immutability of String objects.●

1.4 Exam : Additional objectives
Describe the significance of wrapper classes, including making appropriate selections in the
wrapper classes to suit specified behavior requirements, stating the result of excecuting a
fragment of code that includes an instance of one of the wrapper classes, and writing code
using the following methods of the wrappers classees 9e.g, Integer, Double, etc):

doubleValue❍

floatValue❍

intValue❍

longValue❍

parseXxx❍

getXxx❍

toString❍

toHexString❍

●

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference

http://www.janeg.ca/scjp/langPkg.html [15/03/2004 8:46:22 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.util Package Certification Objectives
Make appropriate selection of collection classes/interfaces to suit specified behavior
requirements.

●

1.4 Exam
This objective has been renamed The Collection Framework and the following has been added:

Distinguish between correct and incorrect implementations of hashcode methods.●

Also see

Collections - a tutorial by Joshua Bloch●

The Collection Framework●

The Java Collections Framework●

Collections
Framework

Collection
Abstract
Classes

Iterator List

Java Quick Reference

http://www.janeg.ca/scjp/utilPkg.html [15/03/2004 8:46:23 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://java.sun.com/docs/books/tutorial/collections/
http://java.sun.com/j2se/1.3/docs/guide/collections/index.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/CA03D566FCE297C386256A220047E7A3?OpenDocument

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.awt Package Certification Objectives
NOT REQUIRED FOR 1.4 EXAM

Write code using component, container, and LayoutManager classes of the java.awt package
to present a GUI with a specified appearance and resize behaviour, and distinguish the
responsibilities of layout managers from those of containers.

●

Write code to implement listener classes and methods, and in listener methods, extract
information from the event to determine the affected component, mouse position, nature and
time of the event. State the classname for any specified event listener interface in the
java.awt.event package.

●

Pay Attention to which Layout Managers implement LayoutManager2

one thing I discovered (after I wrote the exam!) that is of prime importance in
the way containers handle components when they are resized is knowing which
Layout Interface the active LayoutManager implements. Any Layout Manager
that extends the LayoutManager2 Interface keeps track of their own
components.

●

What this means in practice is that if the layout manager is set after components
have been added to the container and the layout manager implements the
LayoutManager2 interface, no components will be visible.

●

LayoutManager2 type managers do not query the container for a list of
components, they maintain their own list.

●

FlowLayout and GridLayout, both implement LayoutManager. When the
container is resized they will query the container for a list of the components and
then layout them out according to their contract.

●

CardLayout, BorderLayout, GridBagLayout, BoxLayout, and OverlayLayout
implement the LayoutManager2 interface. If the container is resized they rely on
their own, internal list of components. Components added to a container before
the LayoutManager was added will not be known and hence not included in the
layout when the container is resized.

●

Note

I haven't gotten around to re-writing my original notes. They are located at
http://members.rogers.com/jgriscti/awt.html

Java Quick Reference

http://www.janeg.ca/scjp/awt.html [15/03/2004 8:46:23 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://members.rogers.com/jgriscti/awt.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package Certification Objectives
NOT REQUIRED FOR 1.4 EXAM

Write code that uses objects of the file class to navigate a file system.●

Write code that uses objects of the classes InputStreamReader and OutputStreamWriter to
translate between Unicode and either platform default or ISO 8859-1 character encoding and
distinguish between conditions under which platform default encoding conversion should be
used and conditions under which a specific conversion should be used.

●

Select valid constructor arguments for FilterInputStream and FilterOutputStream subclasses
from a list of classes in the java.io package.

●

Write appropriate code to read, write, and update files using FileInputStream,
FileOutputStream and RandomAccessFile objects.

●

Describe the permanent effects of the file system of constructing and using FileInputStream,
FileOutputStream, and RandomAccessFile objects.

●

Tip

focus on the classes mentioned in the objectives and their constructors●

Also see

Introduction to Java I/O●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference

http://www.janeg.ca/scjp/io.html [15/03/2004 8:46:23 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/315A3E2B03D5BC00862568BE0060309F?OpenDocument

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Sun Sites
Sun Certified Programmer for the Java 2 Platform certification objectives.●

(JSK) Java 2 Platform Standard Edition v 1.3●

(JLS) Java Language Specification●

Books

On-line

Thinking In Java by Bruce Eckel●

Essentials of the Java Programming Language: A Hands on Guide, Part 1●

Essentials of the Java Programming Language: A Hands on Guide, Part 2●

Writing Advanced Applications for the Java Platform●

Hardcover

(JPL) The Java Programming Language Second Edition by Ken Arnold and James
Gosling, The Java Series, Addison Wesley, 1998

●

(CPJ) Concurrent Programming in Java Second Edition: Design Principles and
Patterns by Doug Lea, The Java Series, Addison Wesley, 2000

●

(JCL1) The Java Class Libraries Second Edition, Volume 1 by Patrick Chan and Rosanna
Lee, The Java Series, Addison Wesley, 1998

●

(JCL2) The Java Class Libraries Second Edition, Volume 2 by Patrick Chan and Rosanna
Lee, The Java Series, Addison Wesley, 1998

●

(JCLS) The Java Class Libraries Second Edition, Volume 1: Supplemental for the Java
2 Platform, Standard Edition, v1.2 by Patrick Chan, Rosanna Lee, and Douglas Kramer,
The Java Series, Addison Wesley, 1999

●

(GJ) Graphic Java: Mastering the AWT by David M. Geary and Alan L. McClellan,
SunSoft Press, 1997

●

(JJ) Java 2 Certification by Jamie Jaworski, New Riders, 1999●

(BB) Java Certification Exam Guide for Programmers and Developers by Barry Boone,
McGraw Hill, 1997

●

(VA) Programming with VisualAge for Java by Marc Carrel-Billiard and John Akerley,
Prentice-Hall, 1998

●

Java Quick Reference

http://www.janeg.ca/scjp/ref.html [15/03/2004 8:46:24 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://suned.sun.com/USA/certification/progobj.html
http://java.sun.com/docs/index.html
http://java.sun.com/docs/books/jls/index.html
http://www.mindview.net/Books/TIJ/
http://java.sun.com/docs/books/
http://java.sun.com/docs/books/
http://java.sun.com/docs/books/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Extracting Source code for the Java API classes
To extract source code for the Java Class files, check your JDK directory for a src.jar file. In the
same directory, enter

 jar tf src.jar > srcList.txt

This will create a text file listing all the .java files in the src.jar file.
View the text file to locate the path name of the class you're interested in and then type:

 jar xf src.jar file pathname

 For example, to extract the Reader.java file
 jar xf src.jar src/java/io/Reader.java

Compiling with JDK 1.3 under Win98
If you're having problems compiling check the following:

you do NOT have CLASSPATH set in your AUTOEXEC.BAT file (JDK 1.3 does not
require the DOS environment variable).
If the variable is set because of other programs, make sure it begins with a '.\' to ensure the
current directory is always included.

1.

you are issuing the compile command from within the directory containing the .java source
file

2.

if you are using the javac switch -classpath DO NOT include an ending '\'3.

JRE can't locate .jar files under Win98
If you've downloaded some .jar files and installed them, as instructed, to the jdk1.3\jre\lib\ext
directory but you're still getting ClassDefNotFound errors when you try to run an application that
references the jars; check your system for a Java JRE Plug-in. If one exists, copy the .jar files to
that ...\jre\lib\ext directory and re-boot.

The Runtime should now be able to find the .jar files properly.

Java Quick Reference

http://www.janeg.ca/scjp/misc.html [15/03/2004 8:46:24 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Tips
an empty source file will compile without error●

if a .java file does not contain a public class or interface it can have any name●

a single-type import will take precedence over an import-on-demand●

import-on-demand types do not increase the size of the compiled code ie only the types
actually used are added to the code

●

while import-on-demand adds no overhead to the compiled code, they can slow down the
speed of the compile

●

a constructor body can include a return statement providing no value is returned●

any method can throw a Runtime or Error exception without declaring it in the throws clause●

methods having the same name and parameter types do not have the same signature unless
the parameter types are listed in the same order

●

main() can be declared final●

main() is inherited and can be overridden if not declared as final●

args[0] references first command line argument after the application name (arrays in Java
are zero-based)

●

main() can be declared public static void ... or static public void ...●

the variable name does not have to be args; can be anything as long as the type is String[]●

variables can have the same name as a method or a class●

only field variables are automatically initialized to their types default value; local variables
must be explicitly initialized

●

arrays are initialized to the default value of their type when they are created, not declared,
even if they are local variables

●

array index operator [] has highest level of precedence●

integer variables can be used as array dimension values●

postfix/prefix operators have the highest level of precedence●

remember that when the postfix operator is used in an expression, the current value of the
variable is used

●

a class may be assigned to an Interface type if the class implements the interface or one of it's
sub-interfaces

●

you cannot cast a primitive type to an object reference, or vice versa●

you cannot cast a boolean type to another primitive type●

String operations whose result does not alter the original string (ie calling toUpperCase() on
a String that is already in uppercase) return the original string reference; otherwise they
return a reference to a new String

●

Strings are immutable; the original String value can never be changed●

all the primitive type wrapper classes override the Object.equals() method to compare the●

Java Quick Reference

http://www.janeg.ca/scjp/tips.html (1 of 4) [15/03/2004 8:46:24 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

value of the objects; the default Object.equals() method checks if the variables reference the
same object

you do not have to have a default statement in a switch() block●

the default statement in a switch() blcok can appear anywhere in the construct, does not
have to be last

●

all sections of the for() loop are optional●

finalize() can only be executed once on any object●

Traps
code with package or import declarations given in wrong order●

more than one package declaration●

file with more than one public class or interface declaration●

filename.java does not match name of public class declared in the file●

single-type imports for two classes in different packages but with the same simple name●

single-type import with the same simple name as a class defined in the source file●

attempting to import a package vs a type ie import java.util vs import java.util.*●

class attempting to extend more than one other class●

class declared both final and abstract●

an interface method declared as native or synchronized●

an interface method declared as static●

subclass with default constructor when the superclass does not have a no-args constructor or
it's no-arg constructor has a throws clause

●

constructor declared with a return type●

an abstract method also declared private, native, final, synchronized, or strictfp●

an abstract method declared in a non-abstract class●

a native or abstract method with a method body●

method returning a type which is not convertible to the declared return type●

a void method returning a value●

a static method referencing this or super●

main() declared other than according to the standard convention●

local (automatic) variables declared with a modifier other than final●

identifiers names beginning with a number or # sign●

main listed as a possible keyword●

capitalized words listed as possible keywords; particularly wrapper classes Integer, Boolean,
etc

●

C/C++ keywords listed as possible Java keywords●

an empty string vs null as the default value for a String object●

incorrect array declaration statements, particularly:●

Java Quick Reference

http://www.janeg.ca/scjp/tips.html (2 of 4) [15/03/2004 8:46:24 AM]

 arrayType [#] varName;

incorrect array initialization statements, particularly:
 arrayType[] varName = new arrayType[2];
 varName = { value, value, value };

●

negative values for array index●

long value for array index●

array declaration used as an array creation statement●

variables of primitive type handled as Objects●

using the char literals \u000A or \u000D in comments or Strings●

String literal "c" assigned to char type●

using == operator to compare values of two different string reference variables●

variables requiring narrowing conversion being passed to methods without using a cast●

assigning a typed byte or short variable to a char variable●

floating point operation throwing an ArithmeticException●

Bitwise operator precdence is: & ^ |●

assigning subclasses with the same parent to each other●

assigning a parent class to a subclass without a cast●

result of an integer operation on byte or short types being assigned to a byte or short without
an explicit cast

●

a non-boolean value used for operand1 in a ternary expression●

using == to compare the contents of two different String objects●

using a new value based on a short-circuit operation that was never evaluated●

code that results in a primitive value being changed in a method (can't happen)●

code that results in an unchanged object value when it was changed in a method●

failing to cast a value to match a method parameter type ie assuming narrowing conversion
on a method call

●

a non-boolean value used in a loop or if() statement●

using the assignment operator '=' vs '==' in an loop or if() statement●

using an expression vs a value promotable to int in a switch() block●

switch() blocks with duplicate case values●

switch() blocks with incorrectly 'typed' case statements●

switch() blocks with missing break statements (unintentionally causing code to fall
through to next case)

●

attempting to access a variable declared in the initialization outside of the for-loop●

for()loop with incorrect initialization expression●

for()loop with a non-boolean expression●

a question that targets a specific object for garbage collection (can't be done)●

a question that presumes to force the gc to run (can only suggest it run)●

Java Quick Reference

http://www.janeg.ca/scjp/tips.html (3 of 4) [15/03/2004 8:46:24 AM]

Java Quick Reference

http://www.janeg.ca/scjp/tips.html (4 of 4) [15/03/2004 8:46:24 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Mock Exams
A complete list of Mock Exams can be found on Maha Anna's JavaRanch site

Another list of Mock Exams by Levteck Getting Certified in Java

A Java SCJP Mock Exam by Ashok Gupta rated, by Levteck, as one of the more difficult mock
exams. The site also contains study notes.

Java Quick Reference

http://www.janeg.ca/scjp/mocks.html [15/03/2004 8:46:25 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://www.javaranch.com/maha
http://www.levteck.com/
http://www.akgupta.com/Java/certification.htm

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 Tech Articles

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Case Studies
Learning how to put an OOP application together is not an easy task.

While there is lots of information available on the Java language and numerous books and articles
on using various OO methods and notations there are very few resources that marry the two in a
format that's helpful to beginners.

One tried and true method of learning how to program is to study the code created by other
programmers. Posted here are the results of my own look at code written and designed by others.

What's the basis for my choosing a case study? Right now it's pretty simple. The code must be

available, preferably on the web1.

it must utilize multiple user defined types2.

The pages in this section will also be laid out slightly different than the rest of the site.

MailMerge

An example of a classic batch processing application implemented in Java. The design
incorporates a Singleton pattern.

JCalculator

An example of a calculator component that can be used in any application. The design
incorporates a Command pattern.

Java Quick Reference

http://www.janeg.ca/caseStudy.html [15/03/2004 8:46:25 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 Tech Articles

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Case Studies - Technical Articles Index
An index to various technical articles on the web.

Basics
Accessing the environment from Java applications●

Constructor and Initialization Ordering●

Class and Object initialization●

Default Constructors●

Destroying Objects●

How arguments are passed to Java methods●

Interfaces and Constants●

Narrowing and Widening Conversions●

Overload Resolution●

Shadowing●

Understanding Expression Evaluation Order●

Using Assertions●

Using Import Declarations●

Using Variable length argument lists●

Class Design
Abstract Classes●

Abstract Classes vs Interfaces●

Anonymous Classes●

Cloning Objects●

Java Design Patterns 101 (Developerworks tutorial)●

Joshua Bloch: A conversation about design●

Local Classes●

Making defensive copies of objects●

Making deep copies of objects●

Returning multiple values from a method●

Using Adapters●

Using Class methods and variables●

Use stack variables whenever possible●

When not to Overload Methods●

Collections
Using Java Collections●

Collection Utilities●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (1 of 7) [15/03/2004 8:46:26 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1204.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt1205.html#tip2
http://www.javaworld.com/javaworld/jw-11-2001/jw-1102-java101_p.html
http://developer.java.sun.com/developer/TechTips/1998/tt0811.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0408.html#1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1009.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0715.html#2
http://developer.java.sun.com/developer/TechTips/2000/tt0110.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0314.html#tip2
http://developer.java.sun.com/developer/TechTips/2000/tt1010.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1105.html#2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0409.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0110.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0204.html#1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0612.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1106.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1008.html#2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0306.html#cloning
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/13DDABAE969AACBC86256B3700586A9A?OpenDocument
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-bloch_p.html
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0506.html#2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0904.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0410.html#making
http://developer.java.sun.com/developer/TechTips/2000/tt1205.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0509.html#tip2
http://developer.java.sun.com/developer/TechTips/2000/tt0912.html#tip1
http://www-106.ibm.com/developerworks/java/library/praxis/pr35.html?dwzone=java
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0806.html#tip2
http://developer.java.sun.com/developer/TechTips/1998/tt0421.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt1107.html#tip2

Choosing a Collections Framework Implementation●

Using Iterators●

Maintaining Insertion order in Collections●

Maintaining a Priority Queue●

Manipulating Arrays●

Sorting Arrays●

Sorting Lists●

Sorting with Comparators(Using Method Pointers)●

The Enumeration interface●

The RandomAccess Interface●

Using ArrayList and LinkedList●

Using Enumerations in Java Programming●

Using HashSet, LinkedHashSet and TreeSet●

Using Hashtable●

Using List Collections efficiently●

Using the LinkedHashMap Class●

Using Sets●

Using Vector in the Collections Framework●

Using Zero-Length Arrays●

Exceptions
Using Exceptions●

Finally clauses●

Guidelines and tips on when and how to use exceptions●

Handling InterruptedExceptions●

Handling Uncaught Exceptions●

Reusing Exceptions●

Stack Trace Elements●

Use the finally keyword to avoid resource leaks●

Using finally vs finalize for resource cleanup●

Why finalizers should (and can) be avoided●

Graphics
Blending Images●

Drawing and rendering simple graphic images without suffering a serious performance hit●

Providing a Scalable Image Icon●

Using the BitSet Class●

I/O
Capturing standard output in a log file●

Converting Pathnames to URLs●

File Channles●

Filter Streams●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (2 of 7) [15/03/2004 8:46:26 AM]

http://developer.java.sun.com/developer/JDCTechTips/2003/tt0220.html#1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0904.html#tip2
http://www-106.ibm.com/developerworks/library/j-mer0821/?n-j-8231
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0821.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0815.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0923.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1023.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1106.html#tip1
http://developer.java.sun.com/developer/TechTips/1998/tt0623.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0709.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0910.html#1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0807.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1105.html#1
http://developer.java.sun.com/developer/TechTips/1998/tt0316.html#tip2
http://developer.java.sun.com/developer/TechTips/1999/tt0809.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0709.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0208.html#sets
http://developer.java.sun.com/developer/TechTips/1999/tt0216.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0910.html#2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0110.html#tip1
http://developer.java.sun.com/developer/TechTips/1998/tt0915.html#tip2
http://www.javaworld.com/javaworld/jw-07-1998/jw-07-techniques.html?
http://developer.java.sun.com/developer/TechTips/2000/tt0425.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0109.html#handling
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0422.html#2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0507.html#tip2
http://www-106.ibm.com/developerworks/java/library/praxis/pr21.html?dwzone=java
http://developer.java.sun.com/developer/TechTips/2000/tt0124.html#tip1
http://www-106.ibm.com/developerworks/java/library/j-jtctips/j-jtc0319a.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0618.html#tip2
http://www-106.ibm.com/developerworks/java/library/j-begjava/index.html?dwzone=java
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0220.html#2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1203.html#1
http://developer.java.sun.com/developer/TechTips/1999/tt1021.html#tip2
http://developer.java.sun.com/developer/TechTips/1999/tt0216.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0507.html
http://developer.java.sun.com/developer/TechTips/1998/tt0811.html#tip1

I/O Redirection●

Improving Java I/O Performance●

Improving I/O Performance with buffering●

Improving Serialization performance with Externalizable●

Piped Streams●

Programming with Buffers●

Programming with File Attributes●

Random Access for Files●

Reading and writing Unicode using I/O Stream Encodings●

Reading from Output Streams●

Serialization in the real world●

Serialization and Transient values●

Temporary Files●

Using Charsets and Encodings●

Using Checksums●

Using ReadResolve●

Using the PushbackReader Class●

Using the Serialiazable Fields API●

HTML
Extracting links from an HTML document●

Java Tools/Extras
A custom utility class for JavaHelp software●

Adding Help to your applications with JavaHelp software●

Capturing Audio with the Sound API●

Creating a HelpSet with JavaHelp software●

Fundamentals of JavaMail API●

Generating custom taglets (JavaDoc)●

Getting started with Java Management Extensions (JMX)●

Reading files from Java Archives (Jars) (An addendum to this article)●

Sending mail with the JavaMail API●

Math
BigDecimal●

Character (using the Character class)●

Formatting BigDecimal Numbers●

Format currencies●

Format Dates●

Formatting Decimal Numbers●

Generating integer random numbers●

Performing exact calculations with floating-point numbers●

Representing currencies●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (3 of 7) [15/03/2004 8:46:26 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0815.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0305.html#tip2
http://developer.java.sun.com/developer/TechTips/1998/tt1020.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0425.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0208.html#streams
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0604.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0304.html#2
http://developer.java.sun.com/developer/TechTips/2000/tt0509.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0216.html#tip3
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0618.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0229.html#tip1
http://developer.java.sun.com/developer/TechTips/1998/tt0217.html#tip2
http://developer.java.sun.com/developer/TechTips/1998/tt0521.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0122.html#2
http://developer.java.sun.com/developer/TechTips/2000/tt0411.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0205.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0518.html#using
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0306.html#serialized
http://developer.java.sun.com/developer/TechTips/1999/tt0923.html#tip1
http://www-106.ibm.com/developerworks/java/library/javahelp/index.html?dwzone=java
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0521.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0319.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html#tip2
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/7B0DB6E32F061D2386256AAE005A27E5?OpenDocument
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0722.html#1
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0122.html#2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0122.html#1
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0220.html#3
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1023.html#tip2
http://developer.java.sun.com/developer/TechTips/1999/tt0317.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0109.html#using
http://developer.java.sun.com/developer/TechTips/1999/tt0826.html#tip2
http://www.javaworld.com/javaworld/jw-06-2001/jw-0601-cents.html
http://www.javaworld.com/javaworld/javaqa/2001-10/01-qa-1005-dateformat_p.html?remote_addr=24.157.40.205&user_agent=Mozilla/4.79%20%5ben%5d%20(Windows%20NT%205.0%3b%20U)
http://developer.java.sun.com/developer/TechTips/2000/tt0411.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0925.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0807.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0409.html#tip2

Some things you should know about Floating Point Arithmetic●

Using Random Numbers for Testing and Simulation●

Working with Number Bases (binary, decimal, octal, hex)●

Miscellaneous
Compiling source directly from a program●

Converting C programs to Java●

Discovering the calling methods name●

Goto statements and Java programming●

Invoking programs from Java applications●

Unpacking Zip files●

Producing MIDI Sound●

Using Method Pointers●

Using runtime.exec to invoke child processes●

Optimization
A Memory Testbed Application / Controlling your Memory Manager●

Patterns
Employ Factory Methods to best advantage●

Singleton: Limit class instances with a modified singleton●

Singleton: Creating thread-safe singletons●

Reflection
Reflection●

Using java.lang.Class●

Using Reflection to Create Class Instances●

Using Reflection to test methods and classes●

RMI
Dynamic Class Loading in RMI●

The LifeCycle of an RMI Server●

Using RMI to access legacy databases●

A Java RMI server framework●

Strings
String vs StringBuffer●

Collators●

Interning Strings●

Optimizing String Performance●

String Concatenation and Performance●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (4 of 7) [15/03/2004 8:46:26 AM]

http://developer.java.sun.com/developer/JDCTechTips/2003/tt0204.html#2
http://developer.java.sun.com/developer/TechTips/2000/tt1107.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1204.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0722.html#2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1009.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0318.html#2
http://developer.java.sun.com/developer/TechTips/2000/tt0613.html#tip2
http://developer.java.sun.com/developer/TechTips/2000/tt0209.html#tip2
http://developer.java.sun.com/developer/TechTips/1998/tt0421.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0805.html#1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1106.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0304.html#1
http://developer.java.sun.com/developer/TechTips/2000/tt1222.html
http://www.javaworld.com/javaworld/javaqa/2001-05/02-qa-0511-factory_p.html?remote_addr=24.157.40.205&user_agent=Mozilla/4.79%20%5ben%5d%20(Windows%20NT%205.0%3b%20U)
http://www.javaworld.com/javaworld/javaqa/2001-11/01-qa-1102-singleton_p.html?remote_addr=24.157.40.205&user_agent=Mozilla/4.79%20%5ben%5d%20(Windows%20NT%205.0%3b%20U)
http://www.javaworld.com/javaworld/javaqa/2002-01/02-qa-0125-singleton4_p.html?remote_addr=24.157.40.205&user_agent=Mozilla/5.0%20(Windows%3b%20U%3b%20Windows%20NT%205.1%3b%20en-US%3b%20rv:0.9.4)%20Gecko/20011128%20Netscape6/6.2.1
http://developer.java.sun.com/developer/TechTips/1997/tt1216.html#tip2
http://developer.java.sun.com/developer/TechTips/2000/tt0314.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0110.html#2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0712.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0227.html#dynamic
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0227.html#lifecycle
http://developer.java.sun.com/developer/TechTips/1999/tt1214.html#tip1
http://www-106.ibm.com/developerworks/library/j-rmiframe/?n-j-10181
http://developer.java.sun.com/developer/TechTips/1998/tt0120.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0317.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0114.html#tip3
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0410.html#optimizing
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0305.html#tip1

Optimizing StringBuffer Usage●

StringBuffer editing●

String tokenization using StreamTokenizer●

String tokenization using StringTokenizer●

Using BreakIterator to parse text●

Using the CharSequence Interface●

Using the java.lang.Character class●

Writing toString Methods●

Swing
Automating GUI programs with java.awt.Robot●

Borders●

Build a better GUI●

Creating a File Chooser●

Create a Splash Screen●

Creating Image Thumbnails●

Creating Modal Internal Frames (with a JOptionPane)●

Creating Round buttons●

Creating Tree Tables, Part 1, Part 2,●

Custom Carets (cursors)●

Cut, Copy and Paste●

Displaying element level tool tips for Swing components●

Drag and Drop Fundamentals●

Drag and Drop, Part 1 , Part 2●

Dragging Text and Images with Swing●

Effective Layout Management●

Fonts (working with)●

Handling Keyboard Focus●

JColorChooser●

JFileChooser●

JFileChooser(Implementing type-ahead feature)●

JFormattedTextField (and regular expresssions)●

JList (advanced programming)●

JList (Making sure your JList index is visible)●

JMenu (displaying large menus)●

JScrollableDesktopPane (create a virtual, scrollable desktop)●

JSpinner(selecting from an ordered list)●

JTabbedPane●

JTable (cell rendering)●

JTable (displaying multi-column lists)●

Set your table options●

JTextField (validating numerical input)●

JTextPane●

JToolTips (customizing)●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (5 of 7) [15/03/2004 8:46:26 AM]

http://developer.java.sun.com/developer/JDCTechTips/2001/tt0518.html#optimizing
http://developer.java.sun.com/developer/TechTips/1999/tt0114.html#tip1
http://developer.java.sun.com/developer/TechTips/1998/tt0722.html#tip1
http://developer.java.sun.com/developer/TechTips/1998/tt0623.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0613.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0604.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0109.html#using
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0205.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0711.html#tip2
http://java.sun.com/products/jfc/tsc/articles/borders/index.html
http://www-106.ibm.com/developerworks/library/j-layout/?n-j-10251
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1217.html
http://www.javaworld.com/javatips/jw-javatip104_p.html
http://developer.java.sun.com/developer/TechTips/1999/tt1021.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1220.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0826.html#tip1
http://java.sun.com/products/jfc/tsc/articles/treetable1/index.html
http://java.sun.com/products/jfc/tsc/articles/treetable2/index.html
http://developer.java.sun.com/developer/TechTips/1999/tt0511.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0414.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0925.html#tip2
http://java.sun.com/products/jfc/tsc/articles/dragndrop/index.html
http://www.javaworld.com/javaworld/jw-03-1999/jw-03-dragndrop.html
http://www.javaworld.com/javaworld/jw-08-1999/jw-08-draganddrop.html
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0318.html#1
http://developer.java.sun.com/developer/onlineTraining/GUI/AWTLayoutMgr/shortcourse.html
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1120.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0518.html#handling
http://developer.java.sun.com/developer/TechTips/1999/tt1117.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0615.html#tip1
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jfile_p.html
http://java.sun.com/products/jfc/tsc/articles/reftf/
http://java.sun.com/products/jfc/tsc/tech_topics/jlist_1/jlist.html
http://www-106.ibm.com/developerworks/java/library/j-jtctips/j-jtc0117c.html
http://www-106.ibm.com/developerworks/java/library/j-jtctips/j-jtc0319b.html
http://www.javaworld.com/javaworld/jw-11-2001/jw-1130-jscroll_p.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1203.html#2
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0712.html#tip1
http://www-106.ibm.com/developerworks/java/library/j-jtable/index.html?dwzone=java
http://developer.java.sun.com/developer/JDCTechTips/2002/tt1119.html#1
http://www.javaworld.com/javatips/jw-javatip116_p.html
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1120.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0907.html#tip2
http://developer.java.sun.com/developer/TechTips/2000/tt1010.html#tip1

JTree (manipulating hierarchical data)●

JTree (understanding TreeModel)●

Keymaps●

Loading text files in Swing efficiently●

Look and Feel●

Make a Splash Screen in Swing●

Performance secrets in Swing●

Press Esc to close Dialog windows●

Printing in Swing●

Saving and reconstituting Swing components●

Tracking locations in a Document●

Undoing Text edits●

Using Swing Timers●

Using the GraphicsEnvironment class●

Swing model filtering (Using filter objects to reinterpret data and state models)●

The Java Foundation Classes(The new standard for Java GUI development)●

Using Progress bars and Monitors in Java GUI Applications●

Using Timers in Swing Applications●

Text in Swing
Converting Numeric Entities●

Displaying Multiline text●

Displaying text in multiple styles●

Text Overview●

Text attributes●

Modeling Text in Documents●

Pattern Matching (java.util.regex)●

The Element Interface●

Tabbing●

Sizing text with FontMetrics●

Customizing a Text Editor●

Concurrency in Swing Text●

Threads
Acquire multiple locks in a fixed, global order●

Do not reassign the object reference of a locked object●

Ease your multithreaded application programming (Producer-Consumer)●

Exploiting ThreadLocal to enhance scalability●

Can ThreadLocal solve the double-checked locking problem?●

Minimizing the overhead of synchronized blocks●

Multi-threading in Java programs●

Piped Streams (to communicate between threads)●

Programmatically choose threads for notification●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (6 of 7) [15/03/2004 8:46:26 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0209.html#tip1
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://developer.java.sun.com/developer/TechTips/1999/tt1005.html#tip2
http://developer.java.sun.com/developer/TechTips/1999/tt1117.html#tip2
http://java.sun.com/products/jfc/tsc/articles/lookandfeel_reference/index.html
http://www.javaworld.com/javaworld/javatips/jw-javatip104.html?
http://java.sun.com/products/jfc/tsc/articles/performance/index.html
http://www.javaworld.com/javaworld/javatips/jw-javatip69.html
http://www.javaworld.com/javaworld/jw-06-1999/jw-06-step.html?
http://developer.java.sun.com/developer/JDCTechTips/2003/tt0805.html#2
http://developer.java.sun.com/developer/TechTips/1999/tt1005.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0714.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0521.html#tip1
http://developer.java.sun.com/developer/TechTips/1999/tt0615.html#tip2
http://www-106.ibm.com/developerworks/java/library/j-filters/index.html?dwzone=java
http://www-106.ibm.com/developerworks/java/library/gui.html?dwzone=java
http://developer.java.sun.com/developer/TechTips/2000/tt0912.html#tip2
http://java.sun.com/products/jfc/tsc/articles/timer/index.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0723.html#tip1
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0723.html#tip2
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0821.html#tip2
http://java.sun.com/products/jfc/tsc/articles/text/overview/
http://java.sun.com/products/jfc/tsc/articles/text/attributes/
http://java.sun.com/products/jfc/tsc/articles/text/element_buffer/
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html#tip1
http://java.sun.com/products/jfc/tsc/articles/text/element_interface/
http://java.sun.com/products/jfc/tsc/articles/text/tabs/
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0110.html#tip2
http://java.sun.com/products/jfc/tsc/articles/text/editor_kit/index.html
http://java.sun.com/products/jfc/tsc/articles/text/concurrency/
http://www-106.ibm.com/developerworks/java/library/j-praxis/pr52.html
http://www-106.ibm.com/developerworks/java/library/j-praxis/pr56.html
http://www-106.ibm.com/developerworks/library/j-prodcon/?n-j-2142
http://www-106.ibm.com/developerworks/library/j-threads3.html?n-j-10181
http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-dcl_p.html
http://developer.java.sun.com/developer/TechTips/2000/tt0328.html#tip3
http://www-106.ibm.com/developerworks/java/library/multithreading.html?dwzone=java
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0208.html#streams
http://www-106.ibm.com/developerworks/java/library/j-spnotif/index.html?dwzone=java

Protecting shared resources with synchronized blocks●

Understand that for methods, synchronized locks objects, not methods or code●

Using synchronized or volatile when accessing shared variables●

Using Synchronized Statements●

Using Timers to run tasks on a background thread●

Writing efficient thread safe classes●

Java Quick Reference

http://www.janeg.ca/case/techIndex.html (7 of 7) [15/03/2004 8:46:26 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0328.html#tip2
http://www-106.ibm.com/developerworks/java/library/praxis/pr46.html?dwzone=java
http://www-106.ibm.com/developerworks/java/library/praxis/pr50.html?dwzone=java
http://developer.java.sun.com/developer/TechTips/1998/tt0915.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0530.html#tip2
http://www-106.ibm.com/developerworks/java/library/threadsafe/index.html?dwzone=java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

This spot will eventually host study notes for the Sun Certified Java Architect Certification Exam.

Useful SCJA sites you may want to check out:

SCJA 2 Study Notes by Aaron Robinson●

Martin Fowler's where you'll find a wealth of information on UML, Extreme Programming,
Patterns and other design topics.

●

ArgoUML a free CASE Tool.●

Java Quick Reference

http://www.janeg.ca/scja.html [15/03/2004 8:46:26 AM]

mailto:feedback@janeg.ca
http://www.software.u-net.com/javaexam/scja.htm
http://www.martinfowler.com/
http://argouml.tigris.org/index.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes

Preliminary Notes

I haven't completed the assignment or passed the SCJD ... these notes are being
built as I go.

●

!!! ALWAYS CHECK SUN'S SITE FOR THE LATEST OBJECTIVES !!!

Overview

The exam consists of two parts:

A programming assignment1.

An examination to be taken at a test center. This exam contains multiple-choice and essay
questions relating to the programming assignment.

2.

There is no time limit on completing the assignment.

Quote from Sun

Basically, the SCJD is testing your ability to apply the Java core API set to code the
solution to a problem. Because it is a programming assignment, you do not have a set
time frame in which to complete the assignment. So, you can get the assignment and
determine the studying you need to do.

Questions and Answers about Java Platform Certification

It is recommended that you track your design decisions as the exam portion will ask you to explain
why you opted for one design feature over another. Also, register for the exam immeadiately upon
uploading your assignment, while your assignment is still fresh in your mind.

The majority consensus (from what I've seen in the forums) is that the assignment takes roughly
120 hours of work to complete.

Downloading the assignment

Order the assignment from Sun. They will send you information on downloading the assignment
within 2 business days. The download will include a jar file containing:

an Introduction and Index document●

source code that serves as a starting point●

a binary database file●

Assignment features

The assignment requires the following features:

a GUI for viewing information. Must demonstrate good principles of design. The specific
design requirements will be provided in the assignment instructions.

●

database extensions to support a flexible search and record locking●

network server functionality for the database systems.●

communications functionality to connect the user interface with the database. The server
must be multi-threaded and thread safe.

●

the application must be able to run in either stand-alone or network mode●

the GUI interface must be flexible enough to allow the easy implementation of future
enhancements

●

Java Quick Reference - SCJD Study Notes

http://www.janeg.ca/scjd.html (1 of 3) [15/03/2004 8:46:26 AM]

mailto:feedback@janeg.ca
http://suned.sun.com/USA/certification/devdetails.html
http://developer.java.sun.com/developer/technicalArticles/Interviews/Certification2/

The finished assignment must include:

source and object code●

Javadoc documentation●

Database server documentation●

User interface (client) documentation●

a README file●

Marking

The programming assignment is worth 155 points, you need 124 points to pass

Marks are based on the following criteria:

General Considerations (58)

ease of use (23)❍

coding standards and readability (23)❍

clarity and maintainablity of the design and implementation (12)❍

●

Documentation (20)

user documentation (10)❍

javadoc source documentation (5)❍

comments (5)❍

●

User Interface (24)

layout uses accepted GUI principles❍

●

Server Design (53)

locking (30)❍

error handling (8)❍

search algorithm: clarity and efficiency (15)❍

●

Knowledge of the following Technologies is apt
to be required

Application Design: Use cases, CRC, UML, Patterns●

GUI Design using Swing components and event handling●

Database processing●

Networking: Client-Server design, TCP/IP, Sockets, RMI, I/O Streams, Object Serialization●

Threads: implementing multi-threading●

Error and Exception handling●

Security profiles●

Documentation: JavaDoc, User Guide, Install instructions●

Other SCJD Resources
The Dallas SCJD Study Group●

Brian Thorn received full marks for his Documentation (Note: These links have not been
working lately. It's possible Mr. Thorn has removed his pages.)

Programming Notes example❍

User Documentation example❍

●

There doesn't appear to be all that much out there. If you come across a good resource site, please
let me know!

Java Quick Reference - SCJD Study Notes

http://www.janeg.ca/scjd.html (2 of 3) [15/03/2004 8:46:26 AM]

http://www.developergroup.org/
http://www.comscreen.com/cert/Programming_Notes.htm
http://www.comscreen.com/cert/User_Documentation.htm

Java Quick Reference - SCJD Study Notes

http://www.janeg.ca/scjd.html (3 of 3) [15/03/2004 8:46:26 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Application Design
The first thing you'll probably do when you download your assignment is read the guidelines and
take a look at the included code. Your first impulse may be to jump in and start coding right away!
DON'T! The point of the assignment isn't just to produce working code, it's to produce well
designed object-oriented code!

Stop and ask yourself:

What constitutes a well-designed Object-Oriented application?●

What features does it have?●

What separates a good design from a poor one?●

Do you have a clear idea of the answers?

Knowing what the various OOD terms: encapsulation, inheritance, polymorphism, etc. mean is not
the same as knowing how to apply them in a design.

Design is often described as "more art than science". That doesn't help much if you don't have alot
of experience in designing OOP applications. Where do you start? How do you begin?

There are a number of modeling tools: CRC, Use Cases, UML Diagrams, Patterns, etc. that help
you describe an application.

A design is actually a model of the abstracted objects you will create to build your application.
Modeling tools help you to identify the objects you'll need and how they will interact with each
other to produce the required results.

You write your class files based on the objects you've modeled.

You might want to poke around the Object Orientation Tips site to find some pointers.

OOD OOP Resources

Java Quick Reference - SCJD Study Notes - Application Design

http://www.janeg.ca/scjd/design.html [15/03/2004 8:46:27 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://ootips.org/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - GUI Design
The JDK comes with a number of Swing demo applications. Check your JDK installed directory, in
the demo/jfc directory. They include a JTable example, amongst other things. The most complete
demo is SwingSet2.

The following links are some notes I've made on what's available.

SimpleExample - changing the Look and Feel●

 Resources

Java Quick Reference - SCJD Study Notes - GUI Design

http://www.janeg.ca/scjd/gui.html [15/03/2004 8:46:27 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Database Processing

Database

Use a RandomAccessFile to build a low-level database. Article on JavaWorld●

Searching

Plant your data in a ternary search tree Article on JavaWorld●

Java Quick Reference - SCJD Study Notes - Database Processing

http://www.janeg.ca/scjd/db.html [15/03/2004 8:46:27 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-step.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-ternary.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Networking

Networking

Custom Networking tutorial on Sun's site.●

Chapter 17 Writing the Network Protocol from Java 2 The Complete Certification Study
Guide by Simon Robers, Philip Heller, and Michael Ernest

●

Remote Method Invocation (RMI)

Sun's RMI White Paper●

Sun's Guide to RMI●

Fundamentals of RMI: Short Course By jGuru on Sun's site. Tutorial may be downloaded●

Building a Java Chat Server tutorial by Greg Travis on the IBM Developerworks site. The
tutorial covers the problems inherent in building a server and techniques for over-coming
them. The tutorial is free and can be downloaded but you need to register first.

●

Distributed Computation with Java Remote Method Invocation a basic RMI tutorial by
Kevin Henry.

●

LifeCycle of an RMI Server (Sun Tech Tip)●

Dynamic Class loading in RMI (Sun Tech Tip)●

JavaWorld RMI Article Index An index of all the RMI articles published at JavaWorld.●

RMI Tools

rmic - The Java RMI Stub Compiler●

rmiregistry - The Java Remote Object Registry●

rmid - The Java RMI Activation System Daemon●

Sockets

● All about Sockets Sun tutorial

Java Quick Reference - SCJD Study Notes - Networking

http://www.janeg.ca/scjd/network.html [15/03/2004 8:46:28 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://java.sun.com/docs/books/tutorial/networking/index.html
http://developer.java.sun.com/developer/Books/certII/
http://java.sun.com/marketing/collateral/javarmi.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html
http://developer.java.sun.com/developer/onlineTraining/rmi/RMI.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/D3F6B14281D7C0EE862569D70046E8EA?OpenDocument
http://www.acm.org/crossroads/xrds6-5/ovp65.html
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0227.html#lifecycle
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0227.html#dynamic
http://www.javaworld.com/javaworld/topicalindex/jw-ti-rmi.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/rmic.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/rmiregistry.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/rmid.html
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Threads
Learn how to implement a read/write lock●

Singletons, critical sections and read/write locks●

Acquire multiple locks in a fixed, global order●

Do not reassign the object reference of a locked object●

Exploiting ThreadLocal to enhance scalability●

Ease your multithreaded application programming (Producer-Consumer)●

Can ThreadLocal solve the double-checked locking problem?●

Minimizing the overhead of synchronized blocks●

Multi-threading in Java programs●

Piped Streams (to communicate between threads)●

Programmatically choose threads for notification●

Protecting shared resources with synchronized blocks●

Understand that for methods, synchronized locks objects, not methods or code●

Using synchronized or volatile when accessing shared variables●

Using Synchronized Statements●

Using Timers to run tasks on a background thread●

Writing efficient thread safe classes●

Double-checked locking: Clever, but broken. Do you know what synchronized really means?
(JavaWorld)

●

Warning! Threading in a multiprocessor world Find out why many tricks to avoid
synchronization overhead just don't work. (JavaWorld)

●

Java Quick Reference - SCJD Study Notes - Threads

http://www.janeg.ca/scjd/threads.html [15/03/2004 8:46:28 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-locks_p.html
http://www.javaworld.com/javaworld/jw-04-1999/jw-04-toolbox_p.html
http://www-106.ibm.com/developerworks/java/library/praxis/pr52.html?dwzone=java
http://www-106.ibm.com/developerworks/java/library/praxis/pr56.html?dwzone=java
http://www-106.ibm.com/developerworks/library/j-threads3.html?n-j-10181
http://www-106.ibm.com/developerworks/library/j-prodcon/?n-j-2142
http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-dcl_p.html
http://developer.java.sun.com/developer/TechTips/2000/tt0328.html#tip3
http://www-106.ibm.com/developerworks/java/library/multithreading.html?dwzone=java
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0208.html#streams
http://www-106.ibm.com/developerworks/java/library/j-spnotif/index.html?dwzone=java
http://developer.java.sun.com/developer/TechTips/2000/tt0328.html#tip2
http://www-106.ibm.com/developerworks/java/library/praxis/pr46.html?dwzone=java
http://www-106.ibm.com/developerworks/java/library/praxis/pr50.html?dwzone=java
http://developer.java.sun.com/developer/TechTips/1998/tt0915.html#tip1
http://developer.java.sun.com/developer/TechTips/2000/tt0530.html#tip2
http://www-106.ibm.com/developerworks/java/library/threadsafe/index.html?dwzone=java
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-double.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-toolbox.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Error and Exception
Handling

Sun Tutorial on Exceptions●

Using Exceptions●

Exception Handling: The good, the bad and the ugly (Article by Michael C. Daconta)●

The Proper Way to do Exception Handling (Article by Brian Maso)●

Exceptions in Java: Nothing Exceptional about them (Article by Gaurav Pal and Sonal
Bansal)

●

Using your own exception classes in Java (Article by Keld H. Hansen)●

Java Quick Reference - SCJD Study Notes - Error and Exception Handling

http://www.janeg.ca/scjd/error.html [15/03/2004 8:46:28 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://java.sun.com/docs/books/tutorial/essential/exceptions/
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0110.html#tip1
http://www.zdnet.com/devhead/stories/articles/0,4413,2686919,00.html
http://www.java-zone.com/free/articles/Maso04/Maso04-1.asp
http://www.javaworld.com/javaworld/jw-08-2000/jw-0818-exceptions_p.html
http://javaboutique.internet.com/tutorials/Exceptions/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Security
Security in Java 2 SDK 1.2 (Sun tutorial)●

Java's Security Architecture (Article by Bill Venners)●

Java security: How to install the security manager and customize your security policy
(Article by Bill Venners)

●

Java Security API - Example●

Java Quick Reference - SCJD Study Notes - Security

http://www.janeg.ca/scjd/security.html [15/03/2004 8:46:28 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://java.sun.com/docs/books/tutorial/security1.2/
http://www.javaworld.com/javaworld/jw-08-1997/jw-08-hood_p.html
http://www.javaworld.com/javaworld/jw-11-1997/jw-11-hood_p.html
http://www.inside-java.com/articles/crypto/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Documentation
JavaDoc Tool Home Page●

How to put comments in your code with JavaDoc●

Java theory and practice: I have to document THAT? Integrated documentation a la Javadoc
is both a benefit and a burden

●

Java Quick Reference - SCJD Study Notes - Documentation

http://www.janeg.ca/scjd/doc.html [15/03/2004 8:46:29 AM]

http://www.janeg.ca/mailto:feedback@janeg.ca
http://java.sun.com/j2se/javadoc/
http://www.devdaily.com/java/edu/pj/pj010014/pj010014.shtml
http://www-106.ibm.com/developerworks/library/j-jtp0821.html?n-j-8222

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Projects is a rather glorified name for this section. Right now it's just small examples.

PropertiesViewer - display the system properties returned by
System.getProperties() in a JTree.

●

ClassBrowser - A simple Java class browser.●

FieldValidation - The example uses InputVerifier's to validate user input.●

Calculator - a simple calculator that uses method reflection to invoke commands.●

CalendarComboBox - a custom 'date' input component that mimics a combo-box, displaying
a perpetual calendar as it's drop-down.

●

Java Quick Reference

http://www.janeg.ca/projects.html [15/03/2004 8:46:29 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

JavaRanch JavaRanch hosts numerous discussion groups related to all areas of Java
Development: SCJP, SCJA and SCJD Certification, EJB, XML, JSP and much,
much more including CattleDrive (Java College) where you can write practice
assignments and have someone nitpick your code for free!

JCHQ Java Programmer Certification Exam and Training. Popular site created by
Marcus Green. Discussions, tutorials, FAQ's and more.

JavaChina A SCJP Certification site created by Roseanne Zhang. Contains a large
Certification FAQ, code examples and much more!

Sun Sites Tutorials On-line Books Resource Sites

Java Quick Reference

http://www.janeg.ca/links.html [15/03/2004 8:46:29 AM]

mailto:feedback@janeg.ca
http://www.javaranch.com/
http://www.jchq.net/
http://javachina.developergroup.org/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Site Design

The site is built and maintained by myself using HomeSite from Allaire

I swiped the folder and page icons from Jeff Rouyer, author of Dynamic HTML: Web Magic.

Java Quick Reference

http://www.janeg.ca/about.html [15/03/2004 8:46:30 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/www.allaire.com
http://www.htmlguru.com/magic

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

New 2 Java Sun site geared to Java newbies. Contains an overview of the language,
how to get started learning and using Java, and links to other resources.

Certification Certification Objectives and exam details.

SDK Download site for latest Java 2 Software Development Kit

JLS View or download the Java Language Specification.

JVM View or download the Java Virtual Machine Specification.

Glossary Glossary of Java Technology related terms.

Code Conventions On-line document outlining coding conventions for the Java
Programming Language

Technical Articles Numerous articles on various aspects of the Java platform: Collections,
JDBC, Programming, JavaBeans, Graphics, etc.

Tech Tips Tips, Techniques and sample code.

Bugs Database containing reported Bugs. You need to register with the site
before you can access the database.

Applets Sample applets contributed by Java enthusiasts or created at Sun.

Code Samples Code snippets (examplets) showing how to handle various common
tasks.

Forte Resources Developer resource for Sun's Java Development IDE, Forte for Java.
Includes links to the FAQ, Technical Articles, Newsgroups,
Documentation and Downloads.

Sun Sites Tutorials On-line Books Resource Sites

Java Quick Reference

http://www.janeg.ca/lnk_sun.html [15/03/2004 8:46:30 AM]

mailto:feedback@janeg.ca
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://suned.sun.com/USA/certification/javamain.html
http://java.sun.com/j2se
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/docs/books/vmspec/index.html
http://java.sun.com/docs/glossary.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/JDCTechTips/
http://developer.java.sun.com/servlet/SessionServlet?url=http://developer.java.sun.com/developer/bugParade/index.jshtml
http://java.sun.com/applets/index.html
http://developer.java.sun.com/developer/codesamples/examplets/index.html
http://forte.sun.com/ffj/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Sun Java Tutorial The Java Tutorial viewable on-line or may be
downloaded.

Thinking in Java Popular tutorial by Bruce Eckel. Download
the html version.

Introduction to Computer Science using Java Interactive tutorial created by Bradley Kjell of
Cental Connecticut State University. Assumes
no prior programming experience.

Introduction to Programming Using Java Tutorial written by David Eck of Hobart and
William Smith Colleges. May be taken
on-line or downloaded.

Java Tutorials A series of Java tutorials available in the
Objective Viewpoint column written by
George Crawford III for ACM Crossroads, an
student online magazine.

Pure Java Education Center Collection of Java "how-to" articles, tips,
techniques and source code.

Brewing Java A basic Java tutorial by Elliot Rusty Harold.

Java Tutorials A collection of introductory Java Tutorials
from Free Java Help.

Java 2 Certification A popular tutorial created by Marcus Green
geared to the Java 2 Certification Objectives

Java Jems Tutorials for beginners and SCJP certification.

JSP Tutorial Tutorial on Java Servlets

JDBC Tutorial Tutorial on Java Database Connectivity from
the Web Developers Virtual Library.

Sun Sites Tutorials On-line Books Resource Sites

Java Quick Reference

http://www.janeg.ca/lnk_tutorials.html [15/03/2004 8:46:31 AM]

mailto:feedback@janeg.ca
http://web2.java.sun.com/docs/books/tutorial/
http://www.jguru.com/download/view.jsp?EID=23349
http://www.bharatexpress.com/javatutorial/cs151java.html
http://math.hws.edu/javanotes/
http://www.acm.org/crossroads/doc/indices/objective-viewpoint.html
http://www.devdaily.com/java/edu/pj/index.shtml
http://www.ibiblio.org/javafaq/javatutorial.html
http://www.freejavahelp.com/tutorial/index.html
http://www.jchq.net/tutorial/introj2.html
http://www.michael-thomas.com/java/index.html
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/
http://wdvl.com/Authoring/DB/Intro/jdbc.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Data Structures and Algorithms with
Object-Oriented Design Patterns in Java

This book is about the fundamentals of data
structures and algorithms--the basic
elements from which large and complex
software artifacts are built.

Java Free Library A list of Java online books made available
by InformIt.

Java by Example Complete tutorial on the Java Language.

Java Expert Solutions Covers a wide variety of topics: RMI,
JDBC, Applets, etc.

Focus on Java Programming This is a free, online textbook on
introductory Java™ programming. Lots of
excercises and example code.

Sun Sites Tutorials On-line Books Resource Sites

Java Quick Reference

http://www.janeg.ca/lnk_books.html [15/03/2004 8:46:31 AM]

mailto:feedback@janeg.ca
http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus5/html/page9.html
http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus5/html/page9.html
http://www.informit.com/free_library/index.asp?t=505A820E-8A4A-477E-809E-5126B7347DC2&n=CAD04AAB-F961-4DAB-9DE1-18D93D771816&session_id={99C1E97A-EEC1-4B56-9BC3-222CAC37AC08}
http://docs.rinet.ru:8080/KofeynyyPrimer/
http://www.cs.umu.se/~hed/java/
http://java.about.com/library/javanotes4/bl-index.htm

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Java FAQ Java FAQ from the computer-lang/java/programmers/faq newsgroup.
Updated weekly.

JavaFile Collection of free Java applets.

DigitalCats Java resource site. Contains articles, links to other resources.

Gamelan One of the oldest and most popular Java resource sites.

JavaWorld Java How-To's and Tutorials from JavaWorld magazine.

Other resources A number of people have written study notes and built Java related sites.
Browse the Java Certification web-ring (see bottom of page) to find others.

Sun Sites Tutorials On-line Books Resource Sites

The Java Certification Web Ring

[Previous] [Next] [Random] [List Sites] [Join Ring]

Java Quick Reference

http://www.janeg.ca/lnk_resources.html [15/03/2004 8:46:31 AM]

mailto:feedback@janeg.ca
http://www.afu.com/intro.html
http://www.javafile.com/
http://www.javacats.com/US/
http://developer.earthweb.com/dlink.index-jhtml.72.1082.-.43.jhtml?tStart=105&tHowMany=8&ord=null&cda=true
http://www.javaworld.com/javaworld/topicalindex/jw-ti-tutorials.html
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;id=39;prev
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;id=39;next
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;random
http://nav.webring.org/cgi-bin/navcgi?ring=javacert;list
http://www.janeg.ca/ring.jsp

Java Project - PropertiesViewer

PropertiesViewer.java

Home | Projects

Java Quick Reference - Project - PropertiesViewer

http://www.janeg.ca/projects/properties/properties.html [15/03/2004 8:46:32 AM]

package ca.janeg.properties;

import java.awt.Dimension;
import java.util.Iterator;
import java.util.Properties;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeMap;
import javax.swing.JPanel;
import javax.swing.JOptionPane;
import javax.swing.JScrollPane;
import javax.swing.SwingUtilities;
import javax.swing.JTree;
import javax.swing.event.TreeSelectionListener;
import javax.swing.event.TreeSelectionEvent;
import javax.swing.tree.TreeSelectionModel;
import javax.swing.tree.DefaultMutableTreeNode;

import javax.swing.JFrame;

/** Displays system properties in a sorted, categorized tree heirarchy.
 * Select a property node to display its corresponding value.
 *
 * @author Jane Griscti jane@janeg.ca
 * @version 1.0 Dec-21-2001
 */
public class PropertiesViewer extends JPanel{
 private Properties props = System.getProperties();
 private JTree tree;
 private JPanel owner;

 /** Creates a JPanel containing a JTree. Nodes are categorized
 * according to the first element of the property name. For example,
 * all properties beginning with 'java' are categorized under
 * the node 'java'.
 */
 public PropertiesViewer(){
 super();
 owner = this;
 createSortedTree();
 JScrollPane jsp = new JScrollPane(tree);
 jsp.setPreferredSize(new Dimension(400, 300));
 jsp.setMinimumSize(getPreferredSize());
 add(jsp);
 }

 /** Builds the JTree. The properties are given to a TreeMap, which automatically
 * sorts them. The keys from the TreeMap are used to create the JTree nodes.
 * A StringTokenizer is used to extract the first portion of the property name
 * to build category nodes.
 */
 private void createSortedTree(){
 DefaultMutableTreeNode top = new DefaultMutableTreeNode("System Properties");
 Set keySet = new TreeMap(props).keySet();
 Iterator iter = keySet.iterator();

PropertiesViewer.java

http://www.janeg.ca/projects/properties/PropertiesViewer.java.html (1 of 3) [15/03/2004 8:46:33 AM]

 DefaultMutableTreeNode key = null;
 DefaultMutableTreeNode category = null;
 String currentCategory = "";
 String newCategory = "";

 while(iter.hasNext()){
 key = new DefaultMutableTreeNode(iter.next());
 StringTokenizer stok = new StringTokenizer((String)key.getUserObject(),
".");
 newCategory = stok.nextToken();

 if(!currentCategory.equals(newCategory)){
 currentCategory = newCategory;
 category = new DefaultMutableTreeNode(newCategory);
 top.add(category);
 }
 category.add(key);
 }

 tree = new JTree(top);
 tree.putClientProperty("JTree.lineStyle", "Angled");

tree.getSelectionModel().setSelectionMode(TreeSelectionModel.SINGLE_TREE_SELECTION);
 tree.addTreeSelectionListener(new TreeListener());
 }

 /** The JTree listener. When a property node is selected a JOptionPane
 * is created to display the value associated with the property.
 */
 private class TreeListener implements TreeSelectionListener{

 public void valueChanged(TreeSelectionEvent e) {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
 tree.getLastSelectedPathComponent();

 if (node == null) return;

 Object nodeInfo = node.getUserObject();

 if (node.isLeaf()) {
 String property = (String)nodeInfo;
 String value = props.getProperty(property);
 if(value.equals("")){
 value = "No associated value.";
 }
 JOptionPane.showMessageDialog(owner,
 value,
 property,
 JOptionPane.INFORMATION_MESSAGE);
 }
 }
 }

 /** Demos the PropertiesViewer.
 */

PropertiesViewer.java

http://www.janeg.ca/projects/properties/PropertiesViewer.java.html (2 of 3) [15/03/2004 8:46:33 AM]

 public static void main(String[] args){
 JFrame frame = new JFrame("Properties Viewer Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 PropertiesViewer pv = new PropertiesViewer();
 frame.getContentPane().add(pv);
 frame.pack();
 frame.setVisible(true);
 }

}

PropertiesViewer.java

http://www.janeg.ca/projects/properties/PropertiesViewer.java.html (3 of 3) [15/03/2004 8:46:33 AM]

Java Project - ClassBrowser

The GUI

A screen shot of the application.

The UML

The UML diagram.
The ClassBrowser class diagram.
The CBClassGroup class diagram.
The CBClassInfo class diagram.
The CBDocument class diagram.
The CBTreePanel class diagram.
The CBTextPane class diagram.
The FieldGroup class diagram.
The ConstructorGroup class diagram.
The MethodGroup class diagram.
The ParsedClassName class diagram.
The NameComparator class diagram.
The AccessSeparator class diagram.

The Source Code

ClassBrowser
AccessSeparator
CBClassGroup
CBClassInfo
CBDocument
CBTextPane
CBTreePanel
ConstructorGroup
FieldGroup
MethodGroup
NameComparator
ParsedClassName

Refactoring Notes

Probably could be refactored to use a Group interface or abstract class as the ConstructorGroup, FieldGroup and
MethodGroup have identical functionality; the only difference being the type of their attributes.

The text display could also using some cleaning up. It would be nice to display the access groups using different colours:
red for 'private', 'green' for public, etc.

Home | Projects

Java Quick Reference - Project - ClassBrowser

http://www.janeg.ca/projects/cb/cb.html (1 of 2) [15/03/2004 8:46:33 AM]

Java Quick Reference - Project - ClassBrowser

http://www.janeg.ca/projects/cb/cb.html (2 of 2) [15/03/2004 8:46:33 AM]

http://www.janeg.ca/projects/cb/images/cbScreenShot.jpg

http://www.janeg.ca/projects/cb/images/cbScreenShot.jpg [15/03/2004 8:46:34 AM]

http://www.janeg.ca/projects/cb/images/cb_uml_1.gif

http://www.janeg.ca/projects/cb/images/cb_uml_1.gif [15/03/2004 8:46:34 AM]

http://www.janeg.ca/projects/cb/images/classBrowser_uml.gif

http://www.janeg.ca/projects/cb/images/classBrowser_uml.gif [15/03/2004 8:46:34 AM]

http://www.janeg.ca/projects/cb/images/cbClassGroup_uml.gif

http://www.janeg.ca/projects/cb/images/cbClassGroup_uml.gif [15/03/2004 8:46:34 AM]

http://www.janeg.ca/projects/cb/images/cbClassInfo_uml.gif

http://www.janeg.ca/projects/cb/images/cbClassInfo_uml.gif [15/03/2004 8:46:35 AM]

http://www.janeg.ca/projects/cb/images/cbDoc_uml.gif

http://www.janeg.ca/projects/cb/images/cbDoc_uml.gif [15/03/2004 8:46:35 AM]

http://www.janeg.ca/projects/cb/images/cbTreePanel_uml.gif

http://www.janeg.ca/projects/cb/images/cbTreePanel_uml.gif [15/03/2004 8:46:35 AM]

http://www.janeg.ca/projects/cb/images/cbTextPane_uml.gif

http://www.janeg.ca/projects/cb/images/cbTextPane_uml.gif [15/03/2004 8:46:35 AM]

http://www.janeg.ca/projects/cb/images/fldGroup_uml.gif

http://www.janeg.ca/projects/cb/images/fldGroup_uml.gif [15/03/2004 8:46:36 AM]

http://www.janeg.ca/projects/cb/images/ctorGroup_uml.gif

http://www.janeg.ca/projects/cb/images/ctorGroup_uml.gif [15/03/2004 8:46:36 AM]

http://www.janeg.ca/projects/cb/images/methodGroup_uml.gif

http://www.janeg.ca/projects/cb/images/methodGroup_uml.gif [15/03/2004 8:46:36 AM]

http://www.janeg.ca/projects/cb/images/parsedClassName_uml.gif

http://www.janeg.ca/projects/cb/images/parsedClassName_uml.gif [15/03/2004 8:46:36 AM]

http://www.janeg.ca/projects/cb/images/nameComparator_uml.gif

http://www.janeg.ca/projects/cb/images/nameComparator_uml.gif [15/03/2004 8:46:37 AM]

http://www.janeg.ca/projects/cb/images/accessSep_uml.gif

http://www.janeg.ca/projects/cb/images/accessSep_uml.gif [15/03/2004 8:46:37 AM]

package ca.janeg.cb;

import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.io.IOException;
import java.util.zip.ZipException;
import java.util.zip.ZipFile;
import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JScrollPane;
import javax.swing.JSplitPane;

/**
 * A simple Java class browser.<p>
 * Takes a .jar or .zip archive, extracts the class names and
 * displays them in a JTree by package or alphabetically.<p>
 * Selecting a class displays it's superclasses, fields,
 * constructors and methods in an adjacent JTextPane.
 *
 *@author Jane Griscti jane@janeg.ca
 *@created January 26, 2002
 */
public class ClassBrowser extends JFrame {
 private JSplitPane mainPanel;
 private CBTreePanel treePanel;
 private CBTextPane textPane = new CBTextPane();

 /**
 * Constructs a new ClassBrowser object
 *
 * @param cbcg a CBClassGroup object
 */
 public ClassBrowser(final CBClassGroup cbcg) {
 super("ClassBrowser");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 treePanel = new CBTreePanel(this, cbcg);

 JScrollPane tsp = new JScrollPane(textPane);
 tsp.setPreferredSize(new Dimension(500, 300));
 tsp.setMinimumSize(tsp.getPreferredSize());

 mainPanel = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treePanel, tsp);

 getContentPane().add(mainPanel);
 createMenuBar();

 pack();

ClassBrowser.java

http://www.janeg.ca/projects/cb/ClassBrowser.html (1 of 3) [15/03/2004 8:46:37 AM]

 setVisible(true);
 }

 /** Builds the menu bar. */
 private void createMenuBar() {

 JMenu menu = new JMenu("View");
 menu.setMnemonic('v');

 JMenuItem pkgItem = new JMenuItem("by Packages");
 JMenuItem classItem = new JMenuItem("by Class");

 pkgItem.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 treePanel.switchToPkgTree();
 }
 }
);

 classItem.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 treePanel.switchToClassTree();
 }
 }
);

 pkgItem.setMnemonic('p');
 classItem.setMnemonic('c');

 menu.add(pkgItem);
 menu.add(classItem);

 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.addActionListener (
 new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 dispose();
 System.exit(0);
 }
 }
);

 exitItem.setMnemonic('x');

 JMenuBar menuBar = new JMenuBar();
 menuBar.add(menu);
 menuBar.add(exitItem);
 setJMenuBar(menuBar);
 }

ClassBrowser.java

http://www.janeg.ca/projects/cb/ClassBrowser.html (2 of 3) [15/03/2004 8:46:37 AM]

 void displayClassInfo(final String className) {
 textPane.displayClassInfo(className);
 }

 private static void exit(){
 System.exit(1);
 }

 /**
 * The main program for the ClassBrowser class
 *
 *@param args The command line arguments
 */
 public static void main(String[] args) {
 if(args.length == 0) {
 System.out.println("Usage: java ClassBrowser filepath");
 System.out.println(" where, filepath is the full path to the archive
file");
 System.out.println(" containing the class or source files.");
 System.out.println(" e.g. c:/j2sdk1.4.0_01/src.zip");
 exit();
 }

 CBClassGroup cbcg = null;

 try {
 cbcg = new CBClassGroup(new ZipFile(new File(args[0])));
 } catch(ZipException e) {
 System.out.println(args[0] + " is not a valid .jar or .zip file.");
 exit();
 }
 catch(IOException e) {
 System.out.println(args[0] + " is not a valid file path.");
 exit();
 }

 ClassBrowser cb = new ClassBrowser(cbcg);
 }
}

ClassBrowser.java

http://www.janeg.ca/projects/cb/ClassBrowser.html (3 of 3) [15/03/2004 8:46:37 AM]

package ca.janeg.cb;

import java.util.ArrayList;

/*
 * Takes an array of objects and uses their string names to separate
 * the elements by their access levels.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 13, 2002
 */
class AccessSeparator {

 /*
 * Checks the name of an object for one of the four access levels:
 * public, protected, private or default and returns four ArrayLists
 * with the objects separated accordingly.
 */
 static Object[] separate(final Object[] obj) {
 ArrayList pub = new ArrayList();
 ArrayList pro = new ArrayList();
 ArrayList pri = new ArrayList();
 ArrayList pkg = new ArrayList();

 String name = null;
 int index = 0;
 for(int i = 0; i < obj.length; i++) {
 name = obj[i].toString();

 if(name.indexOf("public") >= 0) {
 pub.add(obj[i]);
 } else if(name.indexOf("protected") >= 0) {
 pro.add(obj[i]);
 } else if(name.indexOf("private") >= 0) {
 pri.add(obj[i]);
 } else {
 pkg.add(obj[i]);
 }
 }

 return new Object[]{pub, pro, pri, pkg};
 }
}

AccessSeparator.java

http://www.janeg.ca/projects/cb/AccessSeparator.html [15/03/2004 8:46:38 AM]

package ca.janeg.cb;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Enumeration;
import java.util.StringTokenizer;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;

/**
 * Constructs a new CBClassGroup object by extracting
 * class names from a .jar or .zip archive file.
 * Extracted class names are stored for retreival by package or
 * alphabetically by name.
 *
 *@author Jane Griscti jane@janeg.ca
 *@created January 5, 2002
 */
class CBClassGroup {
 private ArrayList entries = new ArrayList();
 private String[] sortedByPkg;
 private String[] sortedByClass;
 private String groupName;

 CBClassGroup(final ZipFile zip) throws IOException {
 groupName = zip.getName();

 Enumeration allEntries = zip.entries();

 ZipEntry zipEntry = null;
 String name;

 while(allEntries.hasMoreElements()) {
 zipEntry = (ZipEntry)allEntries.nextElement();
 name = zipEntry.getName();

 // only want full paths, not partials
 if(name.endsWith(".java") || name.endsWith(".class")) {
 // drop the .java or .class ending
 StringTokenizer stok = new StringTokenizer(name, ".");
 String token = stok.nextToken();
 entries.add(token);
 }
 }

 Collections.sort((ArrayList)entries);

CBClassGroup.java

http://www.janeg.ca/projects/cb/CBClassGroup.html (1 of 2) [15/03/2004 8:46:38 AM]

 sortedByPkg = (String[])entries.toArray(new String[0]);

 Collections.sort((ArrayList)entries, CBNameComparator.getInstance());
 sortedByClass = (String[])entries.toArray(new String[0]);
 entries = null;

 }

 /**
 * Gets the class name entries sorted by package.
 *
 *@return An array of class names sorted by package.
 */
 String[] getByPackageName() {
 return sortedByPkg;
 }

 /**
 * Gets the class name entries sorted by class.
 *
 *@return An array of class names sorted by the class simple name.
 */
 String[] getByClassName() {
 return sortedByClass;
 }

 /**
 * Gets the name of the group of entries.
 *
 *@return The fullpath name of the file containing this group of entries.
 */
 String getGroupName() {
 return groupName;
 }

}

CBClassGroup.java

http://www.janeg.ca/projects/cb/CBClassGroup.html (2 of 2) [15/03/2004 8:46:38 AM]

package ca.janeg.cb;

import java.lang.reflect.Array;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;

/**
 * A CBClassInfo object used to load a class and store pertinent class
 * information: superclasses, fields, methods, constructor names.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 8, 2002
 */
public class CBClassInfo {
 private final static String NAME_DELIMITER = ".";
 private final String fullyQualifiedName;
 private final ParsedClassName pcn;

 private Class thisClass;
 private String[] superClasses;
 private FieldGroup flds;
 private MethodGroup methods;
 private ConstructorGroup ctors;
 private Class[] memberClasses;
 private Class[] memberInterfaces;

 private boolean memberPermission = true;

 /**
 * Constructs a new CBClassInfo object. Checks for a fully qualified class
 * name; however, this does not guarantee that the class is available to be
 * loaded. <p>
 *
 * A 'fully qualified name' consists of the classes package name and simple
 * name given in dot-notation format. For example, java.lang.Object<p>
 *
 * A class may only be loaded, and its information retreived, if it is
 * available to the JVM via the bootstrap loader or the system classpath.
 *
 * @param name a fully qualified class name
 * @exception ClassNotFoundException if name is not a fully qualified class
 * name
 */
 public CBClassInfo(final String name) throws ClassNotFoundException {
 if(!isFullyQualifiedName(name)) {
 throw new ClassNotFoundException(" '" + name + "' is not a fully
qualified class name.");
 }

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (1 of 9) [15/03/2004 8:46:38 AM]

 fullyQualifiedName = name;
 pcn = new ParsedClassName(name, NAME_DELIMITER);
 loadClassData();
 }

 private boolean isFullyQualifiedName(final String name) {
 return name.indexOf(NAME_DELIMITER) > 0;
 }

 private void loadSuperClasses() {

 Class subclass = thisClass;
 Class superclass = subclass.getSuperclass();

 ArrayList tmp = new ArrayList();

 while(superclass != null) {
 String className = superclass.getName();
 tmp.add(className);

 subclass = superclass;
 superclass = subclass.getSuperclass();
 }
 Collections.sort(tmp);
 superClasses = (String[])tmp.toArray(new String[0]);

 tmp = null;
 }

 private void loadMemberClasses() throws SecurityException {
 Class[] members = thisClass.getDeclaredClasses();

 if(members.length > 0) {
 ArrayList mInter = new ArrayList();
 ArrayList mClass = new ArrayList();

 for(int i = 0; i < members.length; i++) {
 if(members[i].isInterface()) {
 mInter.add(members[i]);
 } else {
 mClass.add(members[i]);
 }
 }

 if(!mClass.isEmpty()) {
 memberClasses = (Class[])mClass.toArray(new Class[0]);
 }

 if(!mInter.isEmpty()) {

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (2 of 9) [15/03/2004 8:46:38 AM]

 memberInterfaces = (Class[])mInter.toArray(new Class[0]);
 }
 }
 }

 private void loadClassData() throws ClassNotFoundException {

 thisClass = Class.forName(fullyQualifiedName);
 loadSuperClasses();
 flds = new FieldGroup(thisClass);
 methods = new MethodGroup(thisClass);
 ctors = new ConstructorGroup(thisClass);

 try {
 loadMemberClasses();
 } catch(SecurityException e) {
 memberPermission = false;
 }
 }

 /**
 * Returns the simpleName attribute of the CBClassInfo object
 *
 *@return The simpleName value
 */
 public String getSimpleName() {
 return pcn.getSimpleName();
 }

 /**
 * Returns the fullyQualifiedName attribute of the CBClassInfo object
 *
 *@return The fullyQualifiedName value
 */
 public String getFullyQualifiedName() {
 return fullyQualifiedName;
 }

 /**
 * Returns the packageName attribute of the CBClassInfo object
 *
 *@return The packageName value
 */
 public String getPackageName() {
 return pcn.getPackageName();
 }

 /**
 * Returns the package names associated with the class represented by

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (3 of 9) [15/03/2004 8:46:38 AM]

 * this object.
 *
 *@return The packages value
 */
 public String[] getPackages() {
 return pcn.getPackages();
 }

 /**
 * Returns all the fields declared in the class represented by this object.
 *
 *@return an object array containing Field objects
 */
 public Field[] getAllFields() {
 return flds.getAllFields();
 }

 /**
 * Returns all the public fields declared in the class represented by this
 * object.
 *
 *@return an object array containing Field objects
 */
 public Field[] getPublicFields() {
 return flds.getPublicFields();
 }

 /**
 * Returns all the private fields declared in the class represented by this
 * object.
 *
 *@return an object array containing Field objects
 */
 public Field[] getPrivateFields() {
 return flds.getPrivateFields();
 }

 /**
 * Returns all the package fields declared in the class represented by this
 * object. *
 *
 *@return an object array containing Field objects
 */
 public Field[] getPackageFields() {
 return flds.getPackageFields();
 }

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (4 of 9) [15/03/2004 8:46:38 AM]

 /**
 * Returns all the protected fields declared in the class represented by
 * this object.
 *
 *@return an object array containing Field objects
 */
 public Field[] getProtectedFields() {
 return flds.getProtectedFields();
 }

 /**
 * Returns all the super classes the class represented by this object
 * inherits from.
 *
 *@return an object array containing Class objects
 */
 public String[] getSuperClasses() {
 return superClasses;
 }

 /**
 * Returns all the methods declared in the class represented by this
 * object.
 *
 *@return an object array containing Method objects
 */
 public Method[] getAllMethods() {
 return methods.getAllMethods();
 }

 /**
 * Returns all the public methods declared in the class represented by this
 * object.
 *
 *@return an object array containing Method objects
 */
 public Method[] getPublicMethods() {
 return methods.getPublicMethods();
 }

 /**
 * Returns all the private methods declared in the class represented by
 * this object.
 *
 *@return an object array containing Method objects
 */
 public Method[] getPrivateMethods() {
 return methods.getPrivateMethods();

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (5 of 9) [15/03/2004 8:46:38 AM]

 }

 /**
 * Returns all the package methods declared in the class represented by
 * this object. *
 *
 *@return an object array containing Method objects
 */
 public Method[] getPackageMethods() {
 return methods.getPackageMethods();
 }

 /**
 * Returns all the protected methods declared in the class represented by
 * this object.
 *
 *@return an object array containing Method objects
 */
 public Method[] getProtectedMethods() {
 return methods.getProtectedMethods();
 }

 /**
 * Returns all the constructors declared in the class represented by this
 * object.
 *
 *@return an object array containing Constructor objects
 */
 public Constructor[] getAllConstructors() {
 return ctors.getAllConstructors();
 }

 /**
 * Returns all the public constructors declared in the class represented by
 * this object.
 *
 *@return an object array containing Constructor objects
 */
 public Constructor[] getPublicConstructors() {
 return ctors.getPublicConstructors();
 }

 /**
 * Returns all the private constructors declared in the class represented
 * by this object.
 *
 *@return an object array containing Constructor objects

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (6 of 9) [15/03/2004 8:46:38 AM]

 */
 public Constructor[] getPrivateConstructors() {
 return ctors.getPrivateConstructors();
 }

 /**
 * Returns all the package constructors declared in the class represented
 * by this object. *
 *
 *@return an object array containing Constructor objects
 */
 public Constructor[] getPackageConstructors() {
 return ctors.getPackageConstructors();
 }

 /**
 * Returns all the protected constructors declared in the class represented
 * by this object.
 *
 *@return an object array containing Constructor objects
 */
 public Constructor[] getProtectedConstructors() {
 return ctors.getProtectedConstructors();
 }

 /**
 * Returns all the classes declared as members of the class represented by
 * this object if the package security allows access to the information.
 *
 *@return an object array of Class objects
 *@see isMemberAccessAllowed()
 */
 public Class[] getMemberClasses() {
 return memberClasses;
 }

 /**
 * Returns all the interfaces declared as members of the class represented
 * by this object if the package security allows access to the information.
 *
 * @return an object array of Class objects
 * @see isMemberAccessAllowed()
 */
 public Class[] getMemberInterfaces() {
 return memberInterfaces;
 }

 /**

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (7 of 9) [15/03/2004 8:46:38 AM]

 * Returns true if the class has declared fields.
 */
 public boolean hasFields(){
 return flds.hasFields ? true : false;
 }

 /**
 * Returns true if the class has declared methods.
 */
 public boolean hasMethods() {
 return methods.hasMethods ? true : false;
 }

 /**
 * Returns true if the class has declared constructors.
 */
 public boolean hasCtors() {
 return ctors.hasCtors ? true : false;
 }

 /**
 * Returns true if the class has super classes.
 */
 public boolean hasSuperClasses() {
 return Array.getLength(superClasses) > 0;
 }

 /**
 * Gets the interface attribute of the CBClassInfo object
 *
 *@return The interface value
 */
 public boolean isInterface() {
 return thisClass.isInterface();
 }

 /**
 * Gets the memberAccessAllowed attribute of the CBClassInfo object
 *
 *@return The memberAccessAllowed value
 */
 public boolean isMemberAccessAllowed() {
 return memberPermission;
 }

 /**
 * Returns a textual description of the object.
 *
 *@return the name of the class represented by this object
 */
 public String toString() {

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (8 of 9) [15/03/2004 8:46:38 AM]

 return "A ClassInfo object for the '" + fullyQualifiedName +
 "' class.";
 }

}

CBClassInfo.java

http://www.janeg.ca/projects/cb/CBClassInfo.html (9 of 9) [15/03/2004 8:46:38 AM]

package ca.janeg.cb;

import java.awt.Color;
import javax.swing.text.BadLocationException;
import javax.swing.text.DefaultStyledDocument;
import javax.swing.text.Style;
import javax.swing.text.StyleConstants;

/**
 * A customized DefaultStyledDocument used by the CBTextPane
 * component to display class details as formatted text.
 *
 *@author Jane Griscti jane@janeg.ca
 *@created January 5, 2002
 */
class CBDocument extends DefaultStyledDocument {

 private static Style basicStyle;

 final static String BASIC = "Basic";
 final static String HEADING = "Heading";
 final static String BOLD = "Bold";

 /** Constructs a new CBDocument object */
 CBDocument() {
 createStyles();
 }

 /** Adds three styles to the document: Heading, Basic and Bold */
 private void createStyles() {

 // Create the top-level style, with the required font
 basicStyle = addStyle(BASIC, null);
 StyleConstants.setFontFamily(basicStyle, "Courier New");
 StyleConstants.setFontSize(basicStyle, 14);
 StyleConstants.setForeground(basicStyle, Color.black);
 StyleConstants.setFirstLineIndent(basicStyle, 50.0f);
 StyleConstants.setSpaceAbove(basicStyle, 6);
 StyleConstants.setSpaceBelow(basicStyle, 0);

 // Heading: centered, bold, larger font
 Style s = addStyle(HEADING, basicStyle);
 StyleConstants.setBold(s, true);
 StyleConstants.setFontSize(s, 16);

CBDocument.java

http://www.janeg.ca/projects/cb/CBDocument.html (1 of 2) [15/03/2004 8:46:39 AM]

 StyleConstants.setForeground(s, new Color(0x006699));
 StyleConstants.setAlignment(s, StyleConstants.ALIGN_CENTER);
 StyleConstants.setSpaceBelow(s, 12);

 // BoldText
 s = addStyle(BOLD, basicStyle);
 StyleConstants.setBold(s, true);
 }

}

CBDocument.java

http://www.janeg.ca/projects/cb/CBDocument.html (2 of 2) [15/03/2004 8:46:39 AM]

package ca.janeg.cb;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.util.StringTokenizer;
import javax.swing.JOptionPane;
import javax.swing.JTextPane;
import javax.swing.text.AttributeSet;
import javax.swing.text.BadLocationException;
import javax.swing.text.Style;

/**
 * A component to display formatted text detailing the superclasses,
 * interfaces, fields, constructor, and methods of a selected class.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 5, 2002
 */
class CBTextPane extends JTextPane {
 CBClassInfo currentClass;
 CBDocument doc;

 /** Construct a new CBTextPane object */
 CBTextPane() {
 super();
 }

 /**
 * Formats the class name and assigns it to the first line of the display
 * document.
 */
 private void showHeading() {
 String head = null;

 if(currentClass.isInterface()) {
 head = "Details for Interface " + currentClass.getFullyQualifiedName();
 } else {
 head = "Details for Class " + currentClass.getFullyQualifiedName();
 }

 try {
 AttributeSet s = doc.getStyle(doc.HEADING);
 doc.insertString(doc.getLength(),
 head + "\n",
 s);
 doc.setLogicalStyle(doc.getLength() - 1, (Style)s);
 } catch(BadLocationException e) {
 JOptionPane.showMessageDialog(this,
 "Error displaying details. /n" + e,
 "Display Error",
 JOptionPane.ERROR_MESSAGE);

CBTextPane.java

http://www.janeg.ca/projects/cb/CBTextPane.html (1 of 5) [15/03/2004 8:46:39 AM]

 return;
 }
 }

 /**
 * Retreives the class superclasses, formats their names and adds them to
 * the display document
 */
 private void showSuperClasses() {
 String[] supers = currentClass.getSuperClasses();

 if(supers == null) {
 return;
 }

 AttributeSet s = doc.getStyle(doc.HEADING);
 try {
 doc.insertString(doc.getLength(),
 "SuperClasses \n",
 s);
 } catch(BadLocationException e) {
 JOptionPane.showMessageDialog(this,
 "Error displaying details. /n" + e,
 "Display Error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }

 doc.setLogicalStyle(doc.getLength() - 1, (Style)s);

 for(int i = 0; i < supers.length; i++) {

 try {
 doc.insertString(doc.getLength(),
 supers[i] + "\n",
 doc.getStyle(doc.BASIC));
 } catch(BadLocationException e) {
 JOptionPane.showMessageDialog(this,
 "Error displaying details. /n" + e,
 "Display Error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 }
 }

 /**
 * Formats the class details and adds them to the display document.
 *
 *@param data An array of Interface, Field, Constructor, or Method objects
 *@param type Description of Parameter
 */

CBTextPane.java

http://www.janeg.ca/projects/cb/CBTextPane.html (2 of 5) [15/03/2004 8:46:39 AM]

 private void showData(final Object[] data, final String type) {

 if(data == null) {
 return;
 }

 try {
 if(type != "") {
 AttributeSet s = doc.getStyle(doc.HEADING);
 doc.insertString(doc.getLength(),
 type + "\n",
 s);
 doc.setLogicalStyle(doc.getLength() - 1, (Style)s);
 }else{
 doc.insertString(doc.getLength(),
 "\n",
 doc.getStyle(doc.BASIC));
 }

 for(int i = 0; i < data.length; i++) {
 displayLine(data[i].toString());
 doc.insertString(doc.getLength(),
 "\n",
 doc.getStyle(doc.BASIC));
 }
 } catch(BadLocationException e) {
 JOptionPane.showMessageDialog(this,
 "Error displaying details. /n" + e,
 "Display Error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 }

 /**
 * Write a new line in the document
 *
 * @param line the text to be displayed
 */
 private void displayLine(final String line) {
 String className = currentClass.getSimpleName();
 StringTokenizer stok = new StringTokenizer(line, " (", true);
 String token = new String("");

 while(stok.hasMoreTokens()) {
 token = stok.nextToken();

 try {
 if(token.indexOf(className) == -1) {
 if(token.lastIndexOf('.') > 0 &&
 !token.endsWith(")")) {
 int pos = token.lastIndexOf('.');
 token = token.substring(pos + 1);

CBTextPane.java

http://www.janeg.ca/projects/cb/CBTextPane.html (3 of 5) [15/03/2004 8:46:39 AM]

 }

 doc.insertString(doc.getLength(),
 token,
 doc.getStyle(doc.BASIC));
 } else {
 // show field, method, ctor name in bold
 int pos = token.lastIndexOf('.');
 doc.insertString(doc.getLength(),
 token.substring(pos + 1),
 doc.getStyle(doc.BOLD));
 }
 } catch(BadLocationException e) {
 JOptionPane.showMessageDialog(this,
 "Error displaying details. /n" + e,
 "Display Error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 }

 }

 /**
 * Replaces the current content with the details of the supplied class. All
 * content is displayed using a StyledDocument.
 *
 *@param str the name of the class for which details will be displayed
 */
 void displayClassInfo(final String str) {

 try {
 currentClass = new CBClassInfo(str);
 } catch(ClassNotFoundException e) {
 JOptionPane.showMessageDialog(this,
 "Unable to load class " + str +
 "\nPlease check your classpath.",
 "Error Loading Class",
 JOptionPane.ERROR_MESSAGE);
 return;
 }

 doc = new CBDocument();
 setStyledDocument(doc);

 showHeading();

 if(currentClass.hasSuperClasses()) {
 showSuperClasses();
 Class[] inter = currentClass.getMemberInterfaces();
 showData(inter, "Interfaces");
 }

CBTextPane.java

http://www.janeg.ca/projects/cb/CBTextPane.html (4 of 5) [15/03/2004 8:46:39 AM]

 Class[] members = currentClass.getMemberClasses();
 showData(members, "Member Classes");

 if(currentClass.hasFields()) {
 Field[] flds = currentClass.getPublicFields();
 showData(flds, "Fields");
 flds = currentClass.getPackageFields();
 showData(flds, "");
 flds = currentClass.getProtectedFields();
 showData(flds, "");
 flds = currentClass.getPrivateFields();
 showData(flds, "");
 }

 if(currentClass.hasCtors()) {
 Constructor[] ctors = currentClass.getPublicConstructors();
 showData(ctors, "Constructors");
 ctors = currentClass.getProtectedConstructors();
 showData(ctors, "");
 ctors = currentClass.getPackageConstructors();
 showData(ctors, "");
 ctors = currentClass.getPrivateConstructors();
 showData(ctors, "");
 }

 if(currentClass.hasMethods()) {
 Method[] methods = currentClass.getPublicMethods();
 showData(methods, "Methods");
 methods = currentClass.getProtectedMethods();
 showData(methods, "");
 methods = currentClass.getPackageMethods();
 showData(methods, "");
 methods = currentClass.getPrivateMethods();
 showData(methods, "");
 }
 setCaretPosition(0);
 }
}

CBTextPane.java

http://www.janeg.ca/projects/cb/CBTextPane.html (5 of 5) [15/03/2004 8:46:39 AM]

package ca.janeg.cb;

import java.awt.Dimension;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.ListIterator;
import java.util.StringTokenizer;
import java.util.TreeMap;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;
import javax.swing.event.TreeSelectionEvent;
import javax.swing.event.TreeSelectionListener;
import javax.swing.tree.DefaultMutableTreeNode;
import javax.swing.tree.DefaultTreeModel;
import javax.swing.tree.TreeNode;
import javax.swing.tree.TreePath;
import javax.swing.tree.TreeSelectionModel;

/**
 * Builds and contains the JTree used to display the class heirarchy.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 26, 2002
 */
class CBTreePanel extends JPanel {

 private ClassBrowser parent;
 private JTree tree = new JTree();
 private DefaultMutableTreeNode classTree;
 private DefaultMutableTreeNode pkgTree;
 private CBClassGroup classGroup;
 private Collection sortedClasses = new ArrayList();

 /**
 * Constructs a CBTreePanel object.
 *
 * @param frame the ClassBrowser object to contain the panel
 * @param cbcg the CBClassGroup to be displayed
 */
 CBTreePanel(final ClassBrowser frame, final CBClassGroup cbcg) {
 super();
 parent = frame;
 classGroup = cbcg;

 buildPkgTree();
 buildClassTree();

CBTreePanel.java

http://www.janeg.ca/projects/cb/CBTreePanel.html (1 of 5) [15/03/2004 8:46:39 AM]

 switchToPkgTree();

 tree.putClientProperty("JTree.lineStyle", "Angled");
 tree.getSelectionModel().setSelectionMode(
TreeSelectionModel.SINGLE_TREE_SELECTION);
 tree.addTreeSelectionListener(new CBTreeListener());

 JScrollPane jsp = new JScrollPane(tree);
 jsp.setPreferredSize(new Dimension(300, 500));
 jsp.setMinimumSize(jsp.getPreferredSize());
 add(jsp);
 }

 /** Builds a tree model based on the class package names. */
 private void buildPkgTree() {
 DefaultMutableTreeNode top = new DefaultMutableTreeNode(
classGroup.getGroupName());
 DefaultMutableTreeNode prevNode;
 DefaultMutableTreeNode node;

 String element;
 String key = "";
 StringBuffer keyBuf = new StringBuffer("");
 String keyBufStr;
 TreeMap map = new TreeMap();
 prevNode = top;
 String[] pkgs = classGroup.getByPackageName();

 // build tree nodes
 for(int i = 0; i < pkgs.length; i++) {
 element = pkgs[i];
 keyBuf = new StringBuffer(element.length());
 keyBufStr = "";

 StringTokenizer stok = new StringTokenizer(element, "/");
 ClassInfo data = null;
 int tokenCount = 0;

 while(stok.hasMoreTokens()) {
 key = stok.nextToken();
 tokenCount++;

 keyBuf.append(key + '.');
 keyBufStr = keyBuf.toString();

 if(map.containsKey(keyBufStr)) {
 prevNode = (DefaultMutableTreeNode)map.get(keyBufStr);
 } else {

CBTreePanel.java

http://www.janeg.ca/projects/cb/CBTreePanel.html (2 of 5) [15/03/2004 8:46:39 AM]

 data = new ClassInfo(keyBufStr, key);
 node = new DefaultMutableTreeNode(data);

 // check for top level package names
 if(tokenCount == 1) {
 top.add(node);
 } else {
 prevNode.add(node);
 }

 prevNode = node;
 map.put(keyBufStr, node);
 sortedClasses.add(data);
 }
 }
 }

 pkgTree = top;
 }

 /*
 * Builds a tree model based on the class names.<p>
 *
 * Note: This is not built by using the CBClassGroup sorted classes. It
 * uses the same ClassInfo objects created for the package tree.
 */
 private void buildClassTree() {

 Collections.sort((ArrayList)sortedClasses,
 CBNameComparator.getInstance());
 ListIterator liter = ((ArrayList)sortedClasses
).listIterator();
 DefaultMutableTreeNode classTop = new DefaultMutableTreeNode(
classGroup.getGroupName());
 DefaultMutableTreeNode node;
 ClassInfo element;

 while(liter.hasNext()) {
 element = (ClassInfo)liter.next();
 node = new DefaultMutableTreeNode(element);
 classTop.add(node);
 }

 sortedClasses = null; // finished with sorted classes
 classTree = classTop;
 }

CBTreePanel.java

http://www.janeg.ca/projects/cb/CBTreePanel.html (3 of 5) [15/03/2004 8:46:39 AM]

 /**
 * Switches the JTree model to the sorted class tree model.
 * The display is automatically updated.
 */
 void switchToClassTree() {
 DefaultTreeModel model = (DefaultTreeModel)tree.getModel();
 model.setRoot(classTree);
 model.reload();
 }

 /**
 * Switches the JTree model to the package name tree model.
 * The display is automatically updated.
 */
 void switchToPkgTree() {
 DefaultTreeModel model = (DefaultTreeModel)tree.getModel();
 model.setRoot(pkgTree);
 model.reload();
 }

 /**
 * The listener for the JTree contained in CBTreePanel.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 26, 2002
 */
 private class CBTreeListener implements TreeSelectionListener {

 public void valueChanged(TreeSelectionEvent e) {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
 tree.getLastSelectedPathComponent();

 if(node == null) {
 return;
 }

 if(node.isLeaf()) {
 ClassInfo classInfo = (ClassInfo)node.getUserObject();
 parent.displayClassInfo(classInfo.qualifiedName);
 }
 }
 }

 /**
 * Separates the class name from the package name and stores them
 * separately. A ClassInfo object acts as a leaf node in the JTree.

CBTreePanel.java

http://www.janeg.ca/projects/cb/CBTreePanel.html (4 of 5) [15/03/2004 8:46:39 AM]

 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 5, 2002
 */
 class ClassInfo {

 String qualifiedName;
 String className;

 /**
 * Constructs a new ClassInfo object
 *
 * @param fullpath the fully qualifed class name
 * @param name the simple class name
 */
 ClassInfo(String fullpath, String name) {
 fullpath = fullpath.substring(0, fullpath.length() - 1);
 qualifiedName = fullpath;
 className = name;
 }

 public String getQualifiedName() {
 return qualifiedName;
 }

 /**
 * Overrides Object.toString() to provide each node with a display
 * name; that of the class it represents.
 *
 *@return Description of the Returned Value
 */
 public String toString() {
 return className;
 }
 }

}

CBTreePanel.java

http://www.janeg.ca/projects/cb/CBTreePanel.html (5 of 5) [15/03/2004 8:46:39 AM]

package ca.janeg.cb;

import java.lang.reflect.Array;
import java.lang.reflect.Constructor;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;

/**
 * A constructor group object contains class constructor information separated
 * into groups based on their access privileges. Each grouping is sorted on the
 * constructors simple name.
 *
 *@author Jane Griscti jane@janeg.ca
 *@created January 13, 2002
 */
class ConstructorGroup {

 private final Class owner;
 private Constructor[] ctors;
 private Constructor[] publicConstructors;
 private Constructor[] protectedConstructors;
 private Constructor[] packageConstructors;
 private Constructor[] privateConstructors;

 boolean hasCtors;

 /**
 * Creates a ConstructorGroup object.
 *
 *@param owner the class object the methods are derived from
 */
 ConstructorGroup(final Class owner) {
 this.owner = owner;
 ctors = owner.getDeclaredConstructors();
 Arrays.sort(ctors, NameComparator.getInstance());

 hasCtors = Array.getLength(ctors) > 0;
 if(hasCtors) separateByAccess();
 }

 private void separateByAccess() {
 Object[] obj = AccessSeparator.separate(ctors);

 ArrayList al = (ArrayList)obj[0];
 publicConstructors = (Constructor[])al.toArray(new Constructor[0]);

 al = (ArrayList)obj[1];
 protectedConstructors = (Constructor[])al.toArray(new Constructor[0]);

ConstructorGroup.java

http://www.janeg.ca/projects/cb/ConstructorGroup.html (1 of 2) [15/03/2004 8:46:40 AM]

 al = (ArrayList)obj[2];
 privateConstructors = (Constructor[])al.toArray(new Constructor[0]);

 al = (ArrayList)obj[3];
 packageConstructors = (Constructor[])al.toArray(new Constructor[0]);
 }

 Constructor[] getPublicConstructors() {
 return publicConstructors;
 }

 Constructor[] getProtectedConstructors() {
 return protectedConstructors;
 }

 Constructor[] getPrivateConstructors() {
 return privateConstructors;
 }

 Constructor[] getPackageConstructors() {
 return packageConstructors;
 }

 Constructor[] getAllConstructors() {
 return ctors;
 }

}

ConstructorGroup.java

http://www.janeg.ca/projects/cb/ConstructorGroup.html (2 of 2) [15/03/2004 8:46:40 AM]

package ca.janeg.cb;

import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;

/**
 * A field group object contains class field information separated into groups
 * based on their access privileges. Each grouping is sorted on the fields
 * simple name.
 *
 *@author Jane Griscti jane@janeg.ca
 *@created January 13, 2002
 */

class FieldGroup {

 private final Class owner;
 private Field[] flds;
 private Field[] publicFields;
 private Field[] protectedFields;
 private Field[] packageFields;
 private Field[] privateFields;

 boolean hasFields;

 /**
 * Creates a new FieldGroup object.
 *
 *@param owner the class object the fields are derived from
 */
 FieldGroup(final Class owner) {
 this.owner = owner;
 flds = owner.getDeclaredFields();
 Arrays.sort(flds, NameComparator.getInstance());

 hasFields = Array.getLength(flds) > 0;

 if(hasFields) separateByAccess();
 }

 // separate fields based on their access level
 private void separateByAccess() {
 Object[] obj = AccessSeparator.separate(flds);

 ArrayList al = (ArrayList)obj[0];
 publicFields = (Field[])al.toArray(new Field[0]);

FieldGroup.java

http://www.janeg.ca/projects/cb/FieldGroup.html (1 of 2) [15/03/2004 8:46:40 AM]

 al = (ArrayList)obj[1];
 protectedFields = (Field[])al.toArray(new Field[0]);

 al = (ArrayList)obj[2];
 privateFields = (Field[])al.toArray(new Field[0]);

 al = (ArrayList)obj[3];
 packageFields = (Field[])al.toArray(new Field[0]);
 }

 Field[] getPublicFields() {
 return publicFields;
 }

 Field[] getProtectedFields() {
 return protectedFields;
 }

 Field[] getPrivateFields() {
 return privateFields;
 }

 Field[] getPackageFields() {
 return packageFields;
 }

 Field[] getAllFields() {
 return flds;
 }

}

FieldGroup.java

http://www.janeg.ca/projects/cb/FieldGroup.html (2 of 2) [15/03/2004 8:46:40 AM]

package ca.janeg.cb;

import java.lang.reflect.Array;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;

/**
 * A method group object contains class method information separated into
 * groups based on their access privileges. Each grouping is sorted on the
 * methods simple name.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 13, 2002
 */
class MethodGroup {

 private final Class owner;
 private Method[] methods;
 private Method[] publicMethods;
 private Method[] protectedMethods;
 private Method[] packageMethods;
 private Method[] privateMethods;

 boolean hasMethods;

 /**
 * Creates a MethodGroup object.
 *
 *@param owner the class object the methods are derived from
 */
 MethodGroup(final Class owner) {
 this.owner = owner;
 methods = owner.getDeclaredMethods();
 Arrays.sort(methods, NameComparator.getInstance());

 hasMethods = Array.getLength(methods) > 0;

 if(hasMethods) separateByAccess();
 }

 // separate methods based on their access level
 private void separateByAccess() {
 Object[] obj = AccessSeparator.separate(methods);

MethodGroup.java

http://www.janeg.ca/projects/cb/MethodGroup.html (1 of 2) [15/03/2004 8:46:40 AM]

 ArrayList al = (ArrayList)obj[0];
 publicMethods = (Method[])al.toArray(new Method[0]);

 al = (ArrayList)obj[1];
 protectedMethods = (Method[])al.toArray(new Method[0]);

 al = (ArrayList)obj[2];
 privateMethods = (Method[])al.toArray(new Method[0]);

 al = (ArrayList)obj[3];
 packageMethods = (Method[])al.toArray(new Method[0]);
 }

 Method[] getPublicMethods() {
 return publicMethods;
 }

 Method[] getProtectedMethods() {
 return protectedMethods;
 }

 Method[] getPrivateMethods() {
 return privateMethods;
 }

 Method[] getPackageMethods() {
 return packageMethods;
 }

 Method[] getAllMethods() {
 return methods;
 }

}

MethodGroup.java

http://www.janeg.ca/projects/cb/MethodGroup.html (2 of 2) [15/03/2004 8:46:40 AM]

package ca.janeg.cb;

import java.util.Comparator;

/**
 * Compares fully qualified class, constructor, field and method
 * names based on their simple name; ignores character case.
 *
 * @author Jane Griscti jane@janeg.ca
 * @created January 13, 2002
 */

class NameComparator implements Comparator {

 private final static NameComparator INSTANCE = new NameComparator();

 /*
 * Ensure only one NameComparator is created (Singleton)
 */
 private NameComparator() { }

 private String getDelimiter(final String str) {
 String delimiter = "";
 if(str.indexOf("/") > 0) {
 delimiter = "/";
 } else if(str.indexOf(".") > 0) {
 delimiter = ".";
 }

 return delimiter;
 }

 private String extract(final String str, final String delimiter) {
 String result = str;

 // drop any parameters if it's a method or constructor name
 if(str.indexOf("(") > 0) {
 result = str.substring(0, str.indexOf("("));
 }

 if(delimiter != "") {
 int index = result.lastIndexOf(delimiter);
 result = result.substring(index + 1);
 }

 return result;
 }

NameComparator.java

http://www.janeg.ca/projects/cb/NameComparator.html (1 of 2) [15/03/2004 8:46:41 AM]

 /**
 * Returns a singleton instance of NameComparator
 *
 *@return a NameComparator object
 */
 public static NameComparator getInstance() {
 return INSTANCE;
 }

 /**
 * Compares two objects
 *
 *@param o1 the first object being compared
 *@param o2 the second object being compared
 *@return a negative integer, zero, or a positive integer as the first
 * argument is less than, equal to, or greater than the second.
 */
 public int compare(final Object o1, final Object o2) {
 String s1 = o1.toString();
 String s2 = o2.toString();

 String s1Delimiter = getDelimiter(s1);
 String s2Delimiter = getDelimiter(s2);

 s1 = extract(o1.toString(), s1Delimiter);
 s2 = extract(o2.toString(), s2Delimiter);

 return s1.compareToIgnoreCase(s2);
 }
}

NameComparator.java

http://www.janeg.ca/projects/cb/NameComparator.html (2 of 2) [15/03/2004 8:46:41 AM]

package ca.janeg.cb;

import java.util.StringTokenizer;

/**
 * A ParsedClassName takes a fully qualified class name and breaks into it's
 * component parts using the given delimiter.
 *
 *@author Jane Grisct jane@janeg.ca
 *@created January 26, 2002
 */
class ParsedClassName {

 private String simple;
 private String[] pkgs;
 private String pkgName;

 ParsedClassName(final String name, final String delimiter) {

 StringTokenizer stok = new StringTokenizer(name, delimiter);
 int tokens = stok.countTokens();

 if(tokens > 1) {
 StringBuffer buf = new StringBuffer(name.length());
 pkgs = new String[tokens - 1];
 String tok = "";

 for(int i = 0; i < tokens - 1; i++) {
 tok = stok.nextToken();
 pkgs[i] = tok;
 buf.append(tok + '.');
 }
 pkgName = buf.substring(0, buf.length() - 1);
 }
 simple = stok.nextToken();
 }

 String getSimpleName() {
 return simple;
 }

 String[] getPackages() {
 return pkgs;
 }

 String getPackageName() {

ParsedClassName.java

http://www.janeg.ca/projects/cb/ParsedClassName.html (1 of 2) [15/03/2004 8:46:41 AM]

 return pkgName;
 }

 /**
 * The main program for the ParsedClassName class; used for testing.
 *
 *@param args The command line arguments
 */
 public static void main(String[] args) {
 // good example
 ParsedClassName pcn = new ParsedClassName(
 "java.awt.text.resources.DateFormatZoneData_en", ".");
 System.out.println(pcn.getSimpleName());
 System.out.println(pcn.getPackageName());
 for(int i = 0; i < pcn.pkgs.length; i++) {
 System.out.println(pcn.pkgs[i]);
 }
 System.out.println();

 // works ok with empty tokens
 pcn = new ParsedClassName("java..awt.Button", ".");
 System.out.println(pcn.getSimpleName());
 System.out.println(pcn.getPackageName());
 for(int i = 0; i < pcn.pkgs.length; i++) {
 System.out.println(pcn.pkgs[i]);
 }

 // works ok with ending delimiter
 System.out.println();
 pcn = new ParsedClassName("java..awt.Frame.", ".");
 System.out.println(pcn.getSimpleName());
 System.out.println(pcn.getPackageName());
 for(int i = 0; i < pcn.pkgs.length; i++) {
 System.out.println(pcn.pkgs[i]);
 }

 }
}

ParsedClassName.java

http://www.janeg.ca/projects/cb/ParsedClassName.html (2 of 2) [15/03/2004 8:46:41 AM]

Java Project - FieldValidation

FieldValidation.java
Utils.java

Each field is assigned an InputVerifier which checks the contents of a field when it is exited. If the input does not fall
within the verifiers parameters, focus is automatically returned to the field. A corresponding message is displayed in the
'status' area.

The static method center() from the Utils class is used to center the window on the desktop.

Home | Projects

Java Quick Reference - Project - FieldValidation

http://www.janeg.ca/projects/validate/validate.html [15/03/2004 8:46:42 AM]

 FieldValidation

1 package ca.janeg.project;
2
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import java.awt.Dimension;
6 import java.awt.Font;
7 import java.awt.event.WindowAdapter;
8 import java.awt.event.WindowEvent;
9 import java.text.DateFormat;
10 import java.text.ParseException;
11 import java.text.SimpleDateFormat;
12
13 import javax.swing.BorderFactory;
14 import javax.swing.Box;
15 import javax.swing.BoxLayout;
16 import javax.swing.InputVerifier;
17 import javax.swing.JComponent;
18 import javax.swing.JFrame;
19 import javax.swing.JLabel;
20 import javax.swing.JPanel;
21 import javax.swing.JTextField;
22 import javax.swing.border.Border;
23 import javax.swing.border.TitledBorder;
24
25 import ca.janeg.swing.Utils;
26
27 /**
28 * An example of validating user input fields using
29 * <code>javax.swing.InputVerifier</code>.
30 *
31 * The verifiers are defined as inner classes.
32 *
33 * References:
34 *
35 *
36 * JavaWorld article by Michael Daconta
37 *
38 * JDC Tech Tip - VALIDATING NUMERICAL INPUT IN A JTEXTFIELD
39 *
40 *
41 * @author Jane Griscti, jane@janeg.ca
42 */
43 public class FieldValidation {
44
45 private final static DateFormat dateFormat =
46 new SimpleDateFormat("MM/dd/yyyy");
47 private final Font font = new Font(null,
48 Font.BOLD | Font.ITALIC,
49 12);
50

ca.janeg.project.FieldValidation (Java2HTML)

http://www.janeg.ca/projects/validate/FieldValidation.java.html (1 of 6) [15/03/2004 8:46:42 AM]

http://www.janeg.ca/ca.janeg.project.index.html

51 private final JFrame frame = new JFrame();
52 private final JTextField name = new JTextField(25);
53 private final JTextField age = new JTextField(3);
54 private final JTextField birthday = new JTextField(10);
55 private final JTextField status = new JTextField(30);
56
57 public FieldValidation(){
58 frame.setTitle("Field Validation Example");
59
60 // assign a verifier to each input field
61 age.setInputVerifier(new AgeVerifier());
62 birthday.setInputVerifier(new BirthdayVerifier());
63 name.setInputVerifier(new BlankFieldVerifier());
64
65 buildGUI();
66 }
67
68 /*
69 * Build the example GUI.
70 */
71 private void buildGUI(){
72
73 JPanel mainPanel = new JPanel();
74 mainPanel.setLayout(new BoxLayout(mainPanel, BoxLayout.Y_AXIS));
75 mainPanel.setBorder(BorderFactory.createCompoundBorder(
76 BorderFactory.createEmptyBorder(5,5,5,5),
77 mainPanel.getBorder()));
78
79 mainPanel.add(buildInputPanel());
80 mainPanel.add(buildStatusPanel());
81
82 frame.getContentPane().add(mainPanel, BorderLayout.CENTER);
83
84 frame.addWindowListener(new WindowAdapter() {
85 public void windowClosing(WindowEvent wevt) {
86 System.exit(0);
87 }
88 });
89
90 frame.setResizable(false);
91 frame.pack();
92 Utils.center(frame);
93 frame.setVisible(true);
94 }
95
96 /*
97 * Build the GUI input panel.
98 */
99 private JPanel buildInputPanel(){
100 JPanel panel = new JPanel();
101
102 Border border = BorderFactory.createTitledBorder(
103 BorderFactory.createEtchedBorder(),
104 "Input",
105 TitledBorder.LEADING,

ca.janeg.project.FieldValidation (Java2HTML)

http://www.janeg.ca/projects/validate/FieldValidation.java.html (2 of 6) [15/03/2004 8:46:42 AM]

106 TitledBorder.TOP,
107 font,
108 Color.GRAY);
109
110 panel.setLayout(new BoxLayout(panel,
111 BoxLayout.Y_AXIS));
112 panel.setBorder(border);
113
114 panel.add(buildField(name, "Name:"));
115 panel.add(buildField(age, "Age:"));
116 panel.add(buildField(birthday, "Birthday:"));
117
118 return panel;
119 }
120
121 /*
122 * Build an input field to be displayed in the input panel.
123 */
124 private JPanel buildField(JComponent comp, String label){
125
126 comp.setMinimumSize(comp.getPreferredSize());
127 comp.setMaximumSize(comp.getPreferredSize());
128
129 JPanel panel = new JPanel();
130 panel.setBorder(BorderFactory.createEmptyBorder(2,2,2,2));
131
132 panel.setLayout(new BoxLayout(panel,
133 BoxLayout.X_AXIS));
134
135 Box leftBox = new Box(BoxLayout.X_AXIS);
136 leftBox.setPreferredSize(new Dimension(60, 20));
137 leftBox.add(new JLabel(label));
138
139 Box rightBox = new Box(BoxLayout.X_AXIS);
140 rightBox.add(comp);
141
142 panel.add(leftBox);
143 panel.add(rightBox);
144 panel.add(Box.createHorizontalGlue());
145
146 return panel;
147 }
148
149 /*
150 * Build the GUI status panel.
151 */
152 private JPanel buildStatusPanel(){
153 JPanel panel = new JPanel();
154
155 Border border = BorderFactory.createTitledBorder(
156 BorderFactory.createEtchedBorder(),
157 "Status",
158 TitledBorder.LEADING,
159 TitledBorder.TOP,
160 font,

ca.janeg.project.FieldValidation (Java2HTML)

http://www.janeg.ca/projects/validate/FieldValidation.java.html (3 of 6) [15/03/2004 8:46:42 AM]

161 Color.GRAY);
162 panel.setBorder(border);
163
164 status.setEditable(false);
165 status.setForeground(Color.BLUE);
166 status.setText("Ready");
167 panel.add(status);
168 return panel;
169 }
170
171 /*
172 * Checks to ensure a field is not blank.
173 *
174 * The 'shouldYieldFocus()' method produces
175 * a 'beep' if the validation fails. It is inherited
176 * by the other field verifiers.
177 */
178 private class BlankFieldVerifier extends InputVerifier {
179
180 public boolean verify(JComponent comp) {
181 JTextField fld = (JTextField) comp;
182 String content = fld.getText();
183
184 boolean isValid = true;
185 if (content.length() == 0) {
186 status.setText("Field cannot be blank.");
187 isValid = false;
188 }
189
190 return isValid;
191 }
192
193 public boolean shouldYieldFocus(JComponent input) {
194 boolean valid = super.shouldYieldFocus(input);
195
196 if (!valid) {
197 frame.getToolkit().beep();
198 }
199 return valid;
200 }
201
202 }
203
204 /*
205 * Checks the age field to ensure it is not
206 * empty and that it contains an integer value.
207 */
208 private class AgeVerifier extends BlankFieldVerifier {
209
210 public boolean verify(JComponent comp) {
211
212 JTextField fld = (JTextField) comp;
213 String content = fld.getText();
214
215 boolean isValid = true;

ca.janeg.project.FieldValidation (Java2HTML)

http://www.janeg.ca/projects/validate/FieldValidation.java.html (4 of 6) [15/03/2004 8:46:42 AM]

216
217 try {
218 Integer.parseInt(content);
219 } catch (NumberFormatException nfe) {
220 fld.setText("");
221 status.setText("Age must be a number.");
222 isValid = false;
223 }
224
225 if (isValid) {
226 status.setText("Age is valid.");
227 }
228
229 return isValid;
230 }
231
232 }
233
234 /*
235 * Checks the birthday field to ensure it is not blank
236 * and it contains a valid date string. There is no
237 * range checking on the date.
238 */
239 private class BirthdayVerifier extends BlankFieldVerifier {
240 public boolean verify(JComponent comp) {
241
242 JTextField fld = (JTextField) comp;
243 String content = fld.getText();
244
245 boolean isValid = true;
246 try {
247 dateFormat.parse(content);
248 } catch (ParseException e) {
249 fld.setText("");
250 status.setText("Birthday must be mm/dd/yyyy.");
251 isValid = false;
252 }
253
254 if (isValid) {
255 status.setText("Birthday is valid.");
256 }
257 return isValid;
258 }
259 }
260
261 /**
262 * Main entry point for the class.
263 */
264 public static void main(String[] args){
265 new FieldValidation();
266 }
267
268 }
269

ca.janeg.project.FieldValidation (Java2HTML)

http://www.janeg.ca/projects/validate/FieldValidation.java.html (5 of 6) [15/03/2004 8:46:42 AM]

http://www.janeg.ca/ca/janeg/project/FieldValidation.java.html

 FieldValidation
ca.janeg.project.FieldValidation (Java2HTML)

http://www.janeg.ca/projects/validate/FieldValidation.java.html (6 of 6) [15/03/2004 8:46:42 AM]

 Utils

1
2 package ca.janeg.swing;
3 import java.awt.Dimension;
4 import java.awt.Toolkit;
5 import java.awt.Window;
6
7 /**
8 * Utility methods for Swing components.
9 *
10 *
11 * @author Jane Griscti, jane@janeg.ca
12 */
13 public class Utils {
14
15 /**
16 * Center a component on the screen.
17 *
18 * Source:
19 *
20 * The Java Almanac
21 * @param window the component to be centered.
22 */
23 public static void center(Window window) {
24
25 // Get the size of the screen
26 Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();
27
28 // Determine the new location of the window
29 int w = window.getSize().width;
30 int h = window.getSize().height;
31 int x = (dim.width - w) / 2;
32 int y = (dim.height - h) / 2;
33
34 // Move the window
35 window.setLocation(x, y);
36
37 }
38
39 }
40

 Utils

ca.janeg.swing.Utils (Java2HTML)

http://www.janeg.ca/projects/validate/Utils.java.html [15/03/2004 8:46:43 AM]

http://www.janeg.ca/ca.janeg.swing.index.html

Java Project - Calculator

Calculator.java
CalculatorEngine.java

This is a simple implementation of a Calculator. I started with some code I found in Object-Oriented Programming and
Java by Danny C.C. Poo and Derek B.K. Kiong which implemented the four binary operations: + - / * and = in the class
CalculatorEngine. I added the unary functions and built a Swing GUI.

Design Decisions

CalculatorEngine

The original code returned Double.toString(value). This worked fine from the command line but gave
me problems when I was designing the GUI; exponential numbers were being returned.

I then tried using a JFormattedTextField in the GUI with a DecimalFormat. This also presented
difficulties. The default pattern for DecimalFormat is "#,##0.0#". The display always showed 0.0. I only
wanted to show decimal digits if the user had selected the decimal key. I changed the pattern to #,###.#" and
invoked setDecimalSeperatorAlwaysShown(false) but then the decimal did not show up until the
user selected another digit key and if that happened to be a zero, in any decimal position, it was not shown until a
number between 1 and 9 was selected.

In the end I gave up and decided to modify CalculatorEngine, adding the display field, a
NumberFormatter and modifying the code to keep the value and display attributes in sync.

●

Calculator

The key to the GUI is displaying the various buttons in a pleasing manner and finding an easy way to invoke their
actions. By default, each JButton's action command is set to the value of the button label. This got me thinking
about how nice it would be if, when a user selected the cos button, the button action listener could invoke
engine.cos(). The reflection mechanism in Java allows for just such a scenario.

I also wanted the buttons appearance to vary according to their functions: digit, unary, binary, control. To accomplish
this I created an inner class CalcButton which implements ActionListener and then created a number of
subclasses to handle the different colour settings for each function.

●

All in all the whole thing came out fairly clean<g>. There is one small flaw that I'm aware of, if the result of a unary
operation such as mod is zero, the display shows nothing when really it should show a '0'. Haven't figured out how to get

Java Quick Reference - Project - Calculator

http://www.janeg.ca/projects/calc/calc.html (1 of 2) [15/03/2004 8:46:45 AM]

around this yet. If you have a solution, please let me know <g>

Home | Projects

Java Quick Reference - Project - Calculator

http://www.janeg.ca/projects/calc/calc.html (2 of 2) [15/03/2004 8:46:45 AM]

 Calculator

/* ***
 *
 * File: Calculator.java
 * Package: ca.janeg.calc
 *
 * Contains: Inner classes
 * CalcButton
 * DigitButton
 * FunctionButton
 * UnaryButton
 * ControlButton
 *
 * References: Visual Components: Sum It Up with JCalculator
 * by Claude Duguay,
 * Article at http://archive.devx.com
 * (Layout)
 *
 * The Java Programming Language: 2nd Edition
 * by Ken Arnold and James Gosling
 * Addison-Wesley, 1998, 7th Printing 2000 (p311)
 *
 * The Java Developers Almanac 1.4 (online)
 * http://javaalmanac.com/egs/java.awt/screen_CenterScreen.html
 * http://www.javaalmanac.com/egs/javax.swing/LookFeelNative.html
 *
 * Date Author Changes
 * ------------ ------------- --
 * Oct 17, 2002 Jane Griscti Created
 * Oct 22, 2002 Jane Griscti Cleaned up comments, layouts and action listener
 * Oct 23, 2002 Jane Griscti changed CalcButton to use a white foreground as
 * the default button color and removed redundant
 * calls from the subclasses
 * re-arranged the code in the class body to place
 * inner classes after all methods except main()
 * *** */

package ca.janeg.calc;

import java.awt.Color;
import java.awt.Component;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.GridLayout;
import java.awt.Insets;
import java.awt.Toolkit;
import java.awt.Window;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (1 of 7) [15/03/2004 8:46:45 AM]

http://www.janeg.ca/ca.janeg.calc.index.html

import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.UIManager;
import javax.swing.UnsupportedLookAndFeelException;

/**
 * A GUI interface for <code>CalculatorEngine</code>.
 *
 * @author Jane Griscti jane@janeg.ca
 * @version 1.0 Oct 17, 2002
 */
public class Calculator extends JFrame {
 private final Class ENGINE;
 private final CalculatorEngine engine = new CalculatorEngine();
 private final JTextField display = new JTextField();

 /**
 * Create a new calculator instance.
 */
 public Calculator(){
 setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
 setTitle("Calculator");

 display.setEditable(false);
 display.setBackground(Color.WHITE);

 // set up a Class object used in actionPerformed()
 // to invoke methods on the CalculatorEngine
 ENGINE = engine.getClass();

 buildGUI();
 pack();
 setResizable(false);
 setLAF();
 center(this);
 setVisible(true);
 }

 private void buildGUI(){

 Container cp = getContentPane();
 cp.setLayout(new BoxLayout(cp, BoxLayout.Y_AXIS));

 cp.add(display);
 cp.add(buildControlPanel());
 cp.add(buildButtonPanels());
 }

 private JPanel buildControlPanel(){
 JPanel panel = new JPanel();

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (2 of 7) [15/03/2004 8:46:45 AM]

 panel.setLayout(new BoxLayout(panel, BoxLayout.X_AXIS));

 panel.add(Box.createHorizontalGlue());
 panel.add(new ControlButton("Backspace", "backspace"));
 panel.add(Box.createRigidArea(new Dimension(2, 0)));

 JPanel panel2 = new JPanel(new GridLayout(1, 1, 2, 2));
 panel2.add(new ControlButton("CE", "clearEntry"));
 panel2.add(new ControlButton("C", "clear"));
 panel.add(panel2);

 return panel;
 }

 private JPanel buildButtonPanels() {
 JPanel buttons = new JPanel();
 buttons.setLayout(new BoxLayout(buttons, BoxLayout.X_AXIS));
 buttons.setFont(new Font("Courier", 10, Font.BOLD));

 buttons.add(buildUnaryPanel());
 buttons.add(buildDigitPanel());
 buttons.add(buildFunctionPanel());

 return buttons;
 }

 private JPanel buildDigitPanel(){
 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(4, 3, 2, 2));

 panel.add(new DigitButton("7"));
 panel.add(new DigitButton("8"));
 panel.add(new DigitButton("9"));

 panel.add(new DigitButton("4"));
 panel.add(new DigitButton("5"));
 panel.add(new DigitButton("6"));

 panel.add(new DigitButton("1"));
 panel.add(new DigitButton("2"));
 panel.add(new DigitButton("3"));

 panel.add(new DigitButton("0"));
 panel.add(new DigitButton("."));

 // not a digit but added here to balance out the panel
 panel.add(new UnaryButton(" +/- ", "sign"));

 return panel;
 }

 private JPanel buildFunctionPanel(){
 JPanel buttons = new JPanel(new GridLayout(4, 3, 2, 2));

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (3 of 7) [15/03/2004 8:46:45 AM]

 buttons.add(new FunctionButton("/", "divide"));
 buttons.add(new FunctionButton("&", "and"));
 buttons.add(new FunctionButton("<<", "leftShift"));

 buttons.add(new FunctionButton("*", "multiply"));
 buttons.add(new FunctionButton("|", "divide"));
 buttons.add(new FunctionButton(">>", "rightShift"));

 buttons.add(new FunctionButton("-", "subtract"));
 buttons.add(new FunctionButton("^" , "xor"));
 buttons.add(new FunctionButton("pow"));

 buttons.add(new FunctionButton("+", "add"));
 buttons.add(new FunctionButton("=", "equals"));
 buttons.add(new FunctionButton("mod"));

 return buttons;

 }

 private JPanel buildUnaryPanel(){
 JPanel buttons = new JPanel(new GridLayout(4, 3, 2, 2));

 buttons.add(new UnaryButton("sin"));
 buttons.add(new UnaryButton("cos"));
 buttons.add(new UnaryButton("tan"));
 buttons.add(new UnaryButton("asin"));

 buttons.add(new UnaryButton("acos"));
 buttons.add(new UnaryButton("atan"));
 buttons.add(new UnaryButton("log"));
 buttons.add(new UnaryButton("deg", "degrees"));

 buttons.add(new UnaryButton("rad", "radians"));
 buttons.add(new UnaryButton("sqrt"));

 buttons.add(new UnaryButton("%", "percent"));
 buttons.add(new UnaryButton("1/x", "reciprocal"));

 return buttons;

 }

 /*
 * Center a component on the screen.
 *
 * @param window the component to be centered.
 */
 private void center(Window window) {

 // Get the size of the screen
 Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();

 // Determine the new location of the window
 int w = window.getSize().width;

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (4 of 7) [15/03/2004 8:46:45 AM]

 int h = window.getSize().height;
 int x = (dim.width - w) / 2;
 int y = (dim.height - h) / 2;

 // Move the window
 window.setLocation(x, y);
 }

 /*
 * Set the Look and Feel to the system look and feel.
 */
 private void setLAF() {
 // Get the native look and feel class name
 String nativeLF = UIManager.getSystemLookAndFeelClassName();

 // Install the look and feel
 try {
 UIManager.setLookAndFeel(nativeLF);
 } catch (InstantiationException e) {
 System.out.println(e.getMessage());
 } catch (ClassNotFoundException e) {
 System.out.println(e.getMessage());
 } catch (UnsupportedLookAndFeelException e) {
 System.out.println(e.getMessage());
 } catch (IllegalAccessException e) {
 System.out.println(e.getMessage());
 }
 }

 /*
 * Helper class to handle button formatting.
 * Each button acts as its own listener.
 */
 private class CalcButton extends JButton implements ActionListener{

 CalcButton(String s, String action){
 super(s);
 setActionCommand(action);
 setMargin(new Insets(2, 2, 2, 2));
 setForeground(Color.WHITE);
 addActionListener(this);
 }

 /*
 * Captures the button events and then uses 'reflection'
 * to invoke the right method in the calculator engine
 *
 * Digit buttons are handled slightly different as they
 * all use the digit(int) method and their values must
 * be passed as arguments.
 *
 * The digit button for the decimal has special handling;
 * new Integer(".") throws a NumberFormatException,
 * have to use new Integer('.') which converts the ASCII

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (5 of 7) [15/03/2004 8:46:45 AM]

 * value of '.' to an integer.
 *
 */

 public void actionPerformed(ActionEvent e) {

 String methodName = e.getActionCommand();

 Method method = null;

 try {
 if (e.getSource() instanceof DigitButton) {
 method =
 ENGINE.getMethod("digit", new Class[] { int.class });

 if (methodName.equals(".")) {
 method.invoke(engine, new Object[] { new Integer('.')});
 } else {
 method.invoke(engine, new Object[] {
 new Integer(methodName)});
 }
 } else {
 method = ENGINE.getMethod(methodName, null);
 method.invoke(engine, null);
 }
 } catch (NoSuchMethodException ex) {
 System.out.println("No such method: " + methodName);
 } catch (IllegalAccessException ea) {
 System.out.println("Illegal access" + methodName);
 } catch (InvocationTargetException et) {
 System.out.println("Target exception: " + methodName);
 }

 display.setText(engine.display());
 }
 }

 private class DigitButton extends CalcButton {
 DigitButton(String s){
 super(s, s);
 setForeground(Color.BLUE);
 }
 }

 private class FunctionButton extends CalcButton {
 FunctionButton(String s){
 this(s, s);
 }

 FunctionButton(String s, String action){
 super(s, action);
 setBackground(Color.GRAY);
 }
 }

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (6 of 7) [15/03/2004 8:46:45 AM]

 private class ControlButton extends CalcButton{
 ControlButton(String s){
 this(s, s);
 }

 ControlButton(String s, String action){
 super(s, action);
 setBackground(Color.RED);
 }
 }

 private class UnaryButton extends CalcButton {
 UnaryButton(String s){
 this(s, s);
 }

 UnaryButton(String s, String action){
 super(s, action);
 setBackground(Color.BLUE);
 }
 }

 /**
 * Main entry point for the program
 */
 public static void main(String[] args) {
 new Calculator();
 }
}

 Calculator

ca.janeg.calc.Calculator (Java2HTML)

http://www.janeg.ca/projects/calc/Calculator.java.html (7 of 7) [15/03/2004 8:46:45 AM]

 CalculatorEngine

/* ***
 *
 * File: CalculatorEngine.java
 * Package: ca.janeg.calc
 *
 * References: Object Oriented Programming and Java,
 * by Danny C.C. Poo and Derek B.K. Kiong, Springer, 1999 (p48-49)
 *
 *
 * Date Author Changes
 * ------------ ------------- --
 * Oct 17, 2002 Jane Griscti Created
 * Oct 18, 2002 Jane Griscti Added unary functions %, sqrt, reciprocal, etc
 * Oct 20, 2002 Jane Griscti Added var display, number formatter and related
 * methods
 * Added integer binary operations: xor, or, and
 * leftShift, rightShift
 * Oct 21, 2002 Jane Griscti Cleaned up comments
 * Oct 22, 2002 Jane Griscti Added trig and log unary functions
 * *** */

package ca.janeg.calc;

import java.text.DecimalFormat;
import java.text.NumberFormat;

/**
 * A class to perform standard calculator operations.
 * For example,
 *
 * <pre>
 * CalculatorEngine c = new CalculatorEngine();
 * c.digit(1);
 * c.digit(2);
 * c.add();
 * c.digit(1);
 * c.digit(3);
 * c.equals();
 * System.out.println(c.display());
 * </pre>
 *
 * Accuracy is limited to fifteen decimal places.
 *
 * @author Jane Griscti jane@janeg.ca
 * @version 1.2 Oct 20, 2002
 */
public class CalculatorEngine {

 private StringBuffer display = new StringBuffer(64);
 private DecimalFormat df = (DecimalFormat)NumberFormat.getInstance();
 private boolean newOp = false;
 private boolean inDecimals = false;

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (1 of 8) [15/03/2004 8:46:47 AM]

http://www.janeg.ca/ca.janeg.calc.index.html

 private double value; // current digits
 private double keep; // previous value or operation result
 private int toDo; // binary operation waiting for 2nd value
 private int decimalCount; // number of decimal positions in current
 // value

 /**
 * Creates a new <code>CalculatorEngine</code> object.
 */
 public CalculatorEngine(){
 super();
 df.setMaximumFractionDigits(15);
 }

 /* -- Digits and the decimal point handler -- */

 /**
 * Accept a digit or decimal as input.
 */
 public void digit(final int n){

 /*
 * Strategy:
 * 1. Start a new value if at the beginning of a new operation.
 *
 * 2. Append the input character, setting the decimal flag if it's
 * a decimal point or increasing the decimal count if we're
 * already into decimals.
 *
 * 3. Convert the revised input string to a double for use in
 * calculations; forcing input errors to return a 0.0 value.
 */

 if(newOp){
 display.delete(0, display.length());
 newOp = false;
 }

 char c = (char)n;

 if(c == '.'){
 display.append('.');
 inDecimals = true;
 }else if(!inDecimals){
 display.append(n);
 }else{
 if(decimalCount < 16){
 display.append(n);
 decimalCount++;
 }
 }

 try{
 value = Double.parseDouble(display.toString());

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (2 of 8) [15/03/2004 8:46:47 AM]

 }catch(NumberFormatException e){
 value = Double.parseDouble("0.0");
 }
 }

 /* -- Binary operations --
 *
 * A binary operation signals the engine to:
 * 1. store the current value
 * 2. set the 'toDo' flag with the requested operation
 * 3. accept input for a second value
 * 4. perform the 'toDo' op when '=' or another binary operation
 * is requested
 */

 /**
 * Add the next input value to the previous value
 */
 public void add(){
 binaryOperation("+");
 }

 /**
 * Subtract the next input value from the previous value
 */
 public void subtract(){
 binaryOperation("-");
 }

 /**
 * Multiply the next input value by the previous value
 */
 public void multiply(){
 binaryOperation("*");
 }

 /**
 * Divide the previous value by the next input value
 */
 public void divide(){
 binaryOperation("/");
 }

 /**
 * Bitwise And (&)
 */
 public void and(){
 binaryOperation("&");
 }

 /**
 * Bitwise Or (|)
 */
 public void or(){
 binaryOperation("|");

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (3 of 8) [15/03/2004 8:46:47 AM]

 }

 /**
 * Bitwise (^)
 */
 public void xor(){
 binaryOperation("^");
 }

 /**
 * Bitwise left shift (<)
 */
 public void leftShift(){
 binaryOperation("<");
 }

 /**
 * Bitwise right shift (>)
 */
 public void rightShift(){
 binaryOperation(">");
 }

 /**
 * Modulous (%)
 */
 public void mod(){
 binaryOperation("m");
 }

 /**
 * Raise the previous value to the 'power; of the next input value
 */
 public void pow(){
 binaryOperation("p");
 }

 /**
 * Perform any waiting binary operation and clear previous value
 */
 public void equals(){
 compute();
 toDo = 0;
 newOp = true;
 }

 /*
 * Setup registers for next input value
 */
 private void binaryOperation(final String op){

 if(toDo == 0){
 keep = value;
 }else{
 compute();

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (4 of 8) [15/03/2004 8:46:47 AM]

 }

 value = 0;
 toDo = op.hashCode();
 resetDecimals();
 setDisplay();
 }

 /*
 * Perform a binary operation
 */
 private void compute(){

 switch(toDo){
 case '+': value = keep + value; break;
 case '-': value = keep - value; break;
 case '*': value = keep * value; break;
 case '/':
 if(value != 0){ // ignore divide by zero
 value = keep / value;
 }
 case '&': value = (int)keep & (int)value; break;
 case '|': value = (int)keep | (int)value; break;
 case '^': value = (int)keep ^ (int)value; break;
 case '<': value = (int)keep << (int)value; break;
 case '>': value = (int)keep >> (int)value; break;
 case 'm': value = keep % value; break;
 case 'p': value = Math.pow(keep, value); break;
 }

 keep = value;
 setDisplay();
 }

 /* -- Unary Operations -- */

 /**
 * Compute the square of the current value
 */
 public void sqrt(){
 value = Math.sqrt(value);
 unaryOperation();
 }

 /**
 * Reverse the sign on the current value
 */
 public void sign(){
 value = value * -1;
 unaryOperation();
 }

 /**
 * Convert the current value to a percent
 */

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (5 of 8) [15/03/2004 8:46:47 AM]

 public void percent(){
 value = value / 100;
 unaryOperation();
 }

 /**
 * Convert the current value to it's reciprocal value
 */
 public void reciprocal(){
 if(value > 0){
 value = 1 / value;
 }else{
 value = 0;
 }
 unaryOperation();
 }

 /**
 * Compute the sine of the current value.
 */
 public void sin(){
 value = Math.sin(value);
 unaryOperation();
 }

 /**
 * Compute the cosine of the current value
 */
 public void cos(){
 value = Math.cos(value);
 unaryOperation();
 }

 /**
 * Compute the tan of the current value
 */
 public void tan(){
 value = Math.tan(value);
 unaryOperation();
 }

 /**
 * Compute the asine of the current value
 */
 public void asin(){
 value = Math.asin(value);
 unaryOperation();
 }

 /**
 * Compute the acosine of the current value
 */
 public void acos(){
 value = Math.acos(value);
 unaryOperation();

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (6 of 8) [15/03/2004 8:46:47 AM]

 }

 /**
 * Compute the atan of the current value
 */
 public void atan(){
 value = Math.atan(value);
 unaryOperation();
 }

 /**
 * Compute the log of the current value
 */
 public void log(){
 value = Math.log(value);
 unaryOperation();
 }

 /**
 * Convert the current value to degrees
 */
 public void degrees(){
 value = Math.toDegrees(value);
 unaryOperation();
 }

 /**
 * Convert the current value to radians
 */
 public void radians(){
 value = Math.toRadians(value);
 unaryOperation();
 }

 /*
 * Setup flag to signal start of a new operation and
 * set the display to match the value generated by a
 * unary operation
 */
 private void unaryOperation(){
 newOp = true;
 setDisplay();
 }

 /* -- Control operations -- */

 /**
 * Delete the last entered digit
 */
 public void backspace(){
 display.deleteCharAt(display.length() - 1);
 value = Double.parseDouble(display.toString());
 setDisplay();
 }

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (7 of 8) [15/03/2004 8:46:47 AM]

 /**
 * Clear all values
 */
 public void clear(){
 display.delete(0, display.length());
 value = 0;
 keep = 0;
 toDo = 0;
 resetDecimals();
 }

 /**
 * Clear the current value
 */
 public void clearEntry(){
 display.delete(0, display.length());
 value = 0;
 resetDecimals();
 }

 /*
 * Reset the decimal flag and counter
 */
 private void resetDecimals(){
 inDecimals = false;
 decimalCount = 0;
 }

 /**
 * Convert the current value to a formatted string for
 * display
 */
 private void setDisplay(){
 if(value == 0){
 display.delete(0, display.length());
 }else{
 display.replace(0, display.length(), df.format(value));
 }
 }

 /**
 * Returns the current value as a decimal formatted string
 */
 public String display(){
 return display.toString();
 }

}

 CalculatorEngine

ca.janeg.calc.CalculatorEngine (Java2HTML)

http://www.janeg.ca/projects/calc/CalculatorEngine.java.html (8 of 8) [15/03/2004 8:46:47 AM]

Java Project - CalendarComboBox

CalendarComboBox.java

As a Notes developer, I've gotten used to having a date input box with a perpetual calendar. I thought it would be nice to
have one for my Java projects. It turned out to be less difficult to create than I'd originally imagined.

The one truly nice thing about Java is the richness of it's API. I was able to create the CalendarComboBox by simply
arranging a number of existing components: JFormattedTextField, BasicArrowButton, JTable, and
Popup. Of course, code always looks simple once it's finished. Originally I didn't know the BasicArrowButton and
Popup classes even existed. It took some poking around in the API and Java source code related to JComboBox before I
tracked them down.

I also needed to figure out how to build an array to hold the days in a month and leverage the various date related classes:
Calendar, GregorianCalendar, DateFormat, and DateFormatSymbols. Mr. Dunn's book, Java Rules
was particularly useful in helping me understand how these classes worked.

And last, but not least, were the layout experiments. I got stuck for a few hours on the calendar display; the buttons in the
navigation panel kept changing size, it was very distracting. Finally realized that part of the problem was the JLabel
component I was using to display the month and year name and the fact that I was using a BoxLayout. Once I changed
the label to a JTextField and the calendar panel layout to BorderLayout, with the navigation portion placed in
BorderLayout.NORTH and the table in BorderLayout.CENTER the display started to behave itself.

I ran across a few other snags, they are hightlighted in the code comments. Below are my reasons for designing the class as
I did.

Design Decisions

Class fields

The values represented by these fields are common to the system the class is running on. The data is based on the
system Locale which is not likely to change; at least, not during the active life of a running application.

●

Field access modifiers

All fields (except popup) are declared private and final. This is good coding practice.

The private keyword helps to enforce encapsulation and forces you to think about your classes public interface. In
this case, only one field, current needed to be publicly exposed; a gettor method, public Calendar
getDate() was provided to return current as it's reasonable to assume an external class would need access to
the currently selected date.

●

Java Quick Reference - Project - CalendarComboBox

http://www.janeg.ca/projects/calendar/cal.html (1 of 2) [15/03/2004 8:46:47 AM]

The keyword final emphasizes that the fields are required and that references cannot be accidently modifed during
the life of an object. It also notifies the compiler that the code relating to these values can be safely optimized.
Another advantage is that it helps ensure that everything the object requires to work correctly will be available once it
is created; if you fail to initialize a final variable during object creation the compiler complains.

Why popup isn't final

The API recommends using PopupFactory to create Popup objects. PopupFactory caches popup objects,
managing their reuse and disposal. As the programmer's at Sun have been kind enough to supply me with a class that
can manage popup's it seemed sensible to use it rather than create a final popup reference and attempt to manage
it myself.

●

Listeners as inner classes

There are three basic ways to implement listeners: as external classes, as inner classes or as anonymous classes. The
only reason to implement one as an external class is if it could possibly be used by another class; yet listeners are
generally very specific in nature and certainly are specific in this case so there was nothing to be gained by
implementing them as external classes.

Anonymous listener classes are generally used if they are required by only one element in the class and if they can be
written in nine or ten lines of code. When I started writing the class I had no idea how long a particular listeners code
would be and I did know that one listener, ButtonListener, would be required by three elements, not one. So
again, there was little to be gained by implementing the listeners as anonymous classes. Add to that the difficulty of
maintaining code that is peppered with anonymous classes and the choice of using inner classes became even more
attractive.

●

The registerListeners() method

For the most part, this is simply a personal preference. I find it easier to keep track of listeners when they are all
located in one spot. Having a separate method to handle them just makes life easier for me.

●

Summary

If you've avoided creating custom components, thinking they're to much trouble or that you need to be an expert
programmer to create them, here's the proof that it just ain't so! They can be alot easier to create than you realize.

If you end up using the class in one of your applications please let me know how it fares<g>

Home | Projects

Java Quick Reference - Project - CalendarComboBox

http://www.janeg.ca/projects/calendar/cal.html (2 of 2) [15/03/2004 8:46:47 AM]

 CalendarComboBox

/* ***
 *
 * File: CalendarWidget.java
 * Package: ca.janeg.calendar
 *
 * Contains: ButtonActionListener
 * CalendarModel
 * CalendarSelectionListener
 * InputListener
 *
 * References: 'Java Rules' by Douglas Dunn
 * Addison-Wesley, 2002 (Chapter 5, section 13 - 19)
 *
 * 'Professional Java Custom UI Components'
 * by Kenneth F. Krutsch, David S. Cargo, Virginia Howlett
 * WROX Press, 2001 (Chapter 1-3)
 *
 * Date Author Changes
 * ------------ ------------- --
 * Oct 24, 2002 Jane Griscti Created
 * Oct 27, 2002 jg Cleaned up calendar display
 * Oct 30, 2002 jg added ctor CalendarComboBox(Calendar)
 * Oct 31, 2002 jg Added listeners and Popup
 * Nov 1, 2002 jg Cleaned up InputListener code to only accept
 * valid dates
 * Nov 2, 2002 jg modified getPopup() to handle display when
 * component is positioned at the bottom of the screen
 * Nov 3, 2002 jg changed some instance variables to class variables
 * Mar 29, 2003 jg added setDate() contributed by James Waldrop
 * *** */
package ca.janeg.calendar;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.Point;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.KeyAdapter;
import java.awt.event.KeyEvent;
import java.text.DateFormat;
import java.text.DateFormatSymbols;
import java.text.ParseException;
import java.util.Calendar;
import java.util.Date;
import java.util.GregorianCalendar;

import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JFormattedTextField;

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (1 of 9) [15/03/2004 8:46:49 AM]

http://www.janeg.ca/ca.janeg.calendar.index.html

import javax.swing.JPanel;
import javax.swing.JTable;
import javax.swing.JTextField;
import javax.swing.ListSelectionModel;
import javax.swing.Popup;
import javax.swing.PopupFactory;
import javax.swing.SwingConstants;
import javax.swing.border.LineBorder;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;
import javax.swing.plaf.basic.BasicArrowButton;
import javax.swing.table.DefaultTableModel;
import javax.swing.table.JTableHeader;
import javax.swing.table.TableColumn;

/**
 * A custom component that mimics a combo box, displaying
 * a perpetual calendar rather than a 'list'.
 *
 * @author Jane Griscti jane@janeg.ca
 * @version 1.0 Oct 24, 2002
 */
public class CalendarComboBox extends JPanel {

 // -- class fields
 private static final DateFormatSymbols dfs = new DateFormatSymbols();
 private static final String[] months = dfs.getMonths();
 private static final String[] dayNames = new String[7];
 private static final Toolkit toolkit =
Toolkit.getDefaultToolkit();
 private static final Dimension screenSize = toolkit.getScreenSize();
 private static final PopupFactory factory =
 PopupFactory.getSharedInstance();

 // -- instance fields used with 'combo-box' panel
 private final JPanel inputPanel = new JPanel();

 private final JFormattedTextField input
 = new JFormattedTextField(new Date());
 private final BasicArrowButton comboBtn
 = new BasicArrowButton(SwingConstants.SOUTH);

 // -- instance fields used with calendar panel
 private final JPanel calPanel = new JPanel();
 private final JTextField calLabel = new JTextField(11);
 private final Calendar current = new GregorianCalendar();
 private final CalendarModel display = new CalendarModel(6, 6);
 private final JTable table = new JTable(display);

 private final BasicArrowButton nextBtn =
 new BasicArrowButton(SwingConstants.EAST);
 private final BasicArrowButton prevBtn =
 new BasicArrowButton(SwingConstants.WEST);
 private final BasicArrowButton closeCalendarBtn =
 new BasicArrowButton(SwingConstants.NORTH);

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (2 of 9) [15/03/2004 8:46:49 AM]

 private Popup popup;

 /**
 * Create a new calendar combo-box object set with today's date.
 */
 public CalendarComboBox(){
 this(new GregorianCalendar());
 }

 /**
 * Create a new calendar combo-box object set with the given date.
 *
 * @param cal a calendar object
 * @see java.util.GregorianCalendar
 */
 public CalendarComboBox(final Calendar cal){
 super();

 // set the calendar and input box date
 Date date = cal.getTime();
 current.setTime(date);
 input.setValue(date);

 // create the GUI elements and assign listeners
 buildInputPanel();
 buildCalendarDisplay();
 registerListeners();

 // intially, only display the input panel
 add(inputPanel);
 }

 /*
 * Creates a field and 'combo box' button above the calendar
 * to allow user input.
 */
 private void buildInputPanel(){
 inputPanel.setLayout(new BoxLayout(inputPanel, BoxLayout.X_AXIS));

 input.setColumns(12);
 inputPanel.add(input);

 comboBtn.setActionCommand("combo");
 inputPanel.add(comboBtn);
 }

 /*
 * Builds the calendar panel to be displayed in the popup
 */
 private void buildCalendarDisplay(){

 // Allow for individual cell selection and turn off
 // grid lines.
 table.setCellSelectionEnabled(true);
 table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (3 of 9) [15/03/2004 8:46:49 AM]

 table.setShowGrid(false);

 // Calendar (table) column headers
 // Set column headers to weekday names as given by
 // the default Locale.
 //
 // Need to re-map the retreived names. If used as is,
 // the table model ends up with an extra empty column as
 // the returned names begin at index 1, not zero.
 String[] names = dfs.getShortWeekdays();

 for(int i=1; i<names.length; i++){
 dayNames[i - 1] = "" + names[i].charAt(0);
 }

 display.setColumnIdentifiers(dayNames);
 table.setModel(display);

 // Set the column widths. Need to turn
 // auto resizing off to make this work.
 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);
 int count = table.getColumnCount();

 for(int i = 0; i < count; i ++){
 TableColumn col = table.getColumnModel().getColumn(i);
 col.setPreferredWidth(20);
 }

 // Column headers are only displayed automatically
 // if the table is put in a JScrollPane. Don't want
 // to use one here, so need to add the headers
 // manually.
 JTableHeader header = table.getTableHeader();
 header.setFont(header.getFont().deriveFont(Font.BOLD));

 JPanel panel = new JPanel();
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
 panel.add(header);
 panel.add(table);

 calPanel.setBorder(new LineBorder(Color.BLACK));
 calPanel.setLayout(new BorderLayout());
 calPanel.add(buildCalendarNavigationPanel(), BorderLayout.NORTH);
 calPanel.add(panel);
 }

 /*
 * Creates a small panel above the month table to display the month and
 * year along with the 'prevBtn', 'nextBtn' month selection buttons
 * and a 'closeCalendarBtn'.
 */
 private JPanel buildCalendarNavigationPanel(){
 JPanel panel = new JPanel();
 panel.setLayout(new BoxLayout(panel, BoxLayout.X_AXIS));

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (4 of 9) [15/03/2004 8:46:49 AM]

 // Add a text display of the selected month and year.
 // A JTextField is used for the label instead of a JLabel
 // as it is easier to ensure a consistent size; JLabel
 // expands and contracts with the text size
 calLabel.setEditable(false);
 int fontSize = calLabel.getFont().getSize();
 calLabel.setFont(calLabel.getFont().deriveFont(Font.PLAIN, fontSize - 2)
);
 panel.add(calLabel);

 // set button commands and add to panel
 prevBtn.setActionCommand("prevBtn");
 nextBtn.setActionCommand("nextBtn");
 closeCalendarBtn.setActionCommand("close");

 panel.add(prevBtn);
 panel.add(nextBtn);
 panel.add(closeCalendarBtn);

 return panel;
 }

 /*
 * Register all required listeners with appropriate
 * components
 */
 private void registerListeners(){

 ButtonActionListener btnListener = new ButtonActionListener();

 // 'Combo-box' listeners
 input.addKeyListener(new InputListener());
 comboBtn.addActionListener(btnListener);

 // Calendar (table) selection listener
 // Must be added to both the table selection model
 // and the column selection model; otherwise, new
 // column selections on the same row are not recognized
 CalendarSelectionListener listener = new CalendarSelectionListener();
 table.getSelectionModel().addListSelectionListener(listener);
 table.getColumnModel().getSelectionModel()
 .addListSelectionListener(listener);

 // Calendar navigation listeners
 prevBtn.addActionListener(btnListener);
 nextBtn.addActionListener(btnListener);
 closeCalendarBtn.addActionListener(btnListener);

 }

 /*
 * Fill the table model with the days in the selected month.
 * Rows in the table correspond to 'weeks', columns to 'days'.
 *
 * Strategy:

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (5 of 9) [15/03/2004 8:46:49 AM]

 * 1. get the first calendar day in the new month
 * 2. find it's position in the first week of the month to
 * determine the starting column for the day numbers
 * 3. find the actual number of days in the month
 * 4. fill the calendar with the day values, erasing any days
 * left over from the old month
 */
 private void updateTable(Calendar cal){

 Calendar dayOne = new GregorianCalendar(
 cal.get(Calendar.YEAR),
 cal.get(Calendar.MONTH),
 1);

 // compute the number of days in the month and
 // the start column for the first day in the first week
 int actualDays = cal.getActualMaximum(Calendar.DATE);
 int startIndex = dayOne.get(Calendar.DAY_OF_WEEK) - 1;

 // fill the calendar for the new month
 int day = 1;
 for(int row = 0; row < 6 ; row++){
 for(int col = 0; col < 7; col++){
 if((col < startIndex && row == 0) || day > actualDays){
 // overwrite any left over values from old month
 display.setValueAt("", row, col);
 }else{
 display.setValueAt(new Integer(day), row, col);
 day++;
 }
 }
 }

 // set the month, year label
 calLabel.setText(months[cal.get(Calendar.MONTH)] +
 ", " + cal.get(Calendar.YEAR));

 // set the calendar selection
 table.changeSelection(cal.get(Calendar.WEEK_OF_MONTH) - 1,
 cal.get(Calendar.DAY_OF_WEEK) - 1,
 false, false);
 }

 /*
 * Gets a Popup to hold the calendar display and determines
 * it's position on the screen.
 */
 private Popup getPopup(){
 Point p = input.getLocationOnScreen();
 Dimension inputSize = input.getPreferredSize();
 Dimension calendarSize = calPanel.getPreferredSize();

 if((p.y + calendarSize.height) < screenSize.height) {
 // will fit below input panel
 popup = factory.getPopup(input, calPanel,

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (6 of 9) [15/03/2004 8:46:49 AM]

 p.x, p.y + (int)inputSize.height);
 } else {
 // need to fit it above input panel
 popup = factory.getPopup(input, calPanel,
 p.x, p.y - (int)calendarSize.height);
 }
 return popup;
 }

 /*
 * Returns the currently selected date as a <code>Calendar</code> object.
 *
 * @return Calendar the currently selected calendar date
 */
 public Calendar getDate(){
 return current;
 }

 /**
 * Sets the current date and updates the UI to reflect the new date.
 * @param newDate the new date as a <code>Date</code> object.
 * @see Date
 * @author James Waldrop
 */
 public void setDate(Date newDate) {
 current.setTime(newDate);
 input.setValue(current.getTime());
 }

 /*
 * Creates a custom model to back the table.
 */
 private class CalendarModel extends DefaultTableModel {

 public CalendarModel(int row, int col){
 super(row, col);
 }

 /**
 * Overrides the method to return an Integer class
 * type for all columns. The numbers are automatically
 * right-aligned by a default renderer that's supplied
 * as part of JTable.
 */
 public Class getColumnClass(int column){
 return Integer.class;
 }

 /**
 * Overrides the method to disable cell editing.
 * The default is editable.
 */
 public boolean isCellEditable(int row, int col){
 return false;
 }

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (7 of 9) [15/03/2004 8:46:49 AM]

 }

 /*
 * Captures the 'prevBtn', 'nextBtn', 'comboBtn' and
 * 'closeCalendarBtn' actions.
 *
 * The combo button is disabled when the popup is shown
 * and enabled when the popup is hidden. Failure to do
 * so results in the popup screen area not being cleared
 * correctly if the user clicks the button while the popup
 * is being displayed.
 */
 private class ButtonActionListener implements ActionListener {
 public void actionPerformed(ActionEvent e){
 String cmd = e.getActionCommand();

 if(cmd.equals("prevBtn")){
 current.add(Calendar.MONTH, -1);
 input.setValue(current.getTime());
 }else if(cmd.equals("nextBtn")){
 current.add(Calendar.MONTH, 1);
 input.setValue(current.getTime());
 }else if(cmd.equals("close")){
 popup.hide();
 comboBtn.setEnabled(true);
 }else{
 comboBtn.setEnabled(false);
 popup = getPopup();
 popup.show();
 }

 updateTable(current);
 }
 }

 /*
 * Captures a user selection in the calendar display and
 * changes the value in the 'combo box' to match the selected date.
 *
 */
 private class CalendarSelectionListener implements ListSelectionListener {

 public void valueChanged(ListSelectionEvent e){
 if (!e.getValueIsAdjusting()) {
 int row = table.getSelectedRow();
 int col = table.getSelectedColumn();

 Object value = null;
 try{
 value = display.getValueAt(row, col);
 }catch(ArrayIndexOutOfBoundsException ex){
 // ignore, happens when the calendar is
 // displayed for the first time
 }

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (8 of 9) [15/03/2004 8:46:49 AM]

 if(value instanceof Integer){
 int day = ((Integer)value).intValue();
 current.set(Calendar.DATE, day);
 input.setValue(current.getTime());
 }
 }
 }
 }

 /*
 * Captures user input in the 'combo box'
 * If the input is a valid date and the user pressed
 * ENTER or TAB, the calendar selection is updated
 */
 private class InputListener extends KeyAdapter {
 public void keyTyped(KeyEvent e) {

 DateFormat df = DateFormat.getDateInstance();
 Date date = null;

 try{
 date = df.parse(input.getText());
 }catch(ParseException ex){
 // ignore invalid dates
 }

 // change the calendar selection if the date is valid
 // and the user hit ENTER or TAB
 char c = e.getKeyChar();
 if(date != null &&
 (c == KeyEvent.VK_ENTER || c == KeyEvent.VK_TAB)) {
 current.setTime(date);
 updateTable(current);
 }
 }
 }
}

 CalendarComboBox

ca.janeg.calendar.CalendarComboBox (Java2HTML)

http://www.janeg.ca/projects/calendar/CalendarComboBox.java.html (9 of 9) [15/03/2004 8:46:49 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - GUI Design

SimpleExample Demonstrates

changing the Look and Feel●

JRadioButtons, ButtonGroup, and mnemonics●

setting up an ActionListener as an inner class●

creating an anonymous WindowAdapter, implementing WindowClosing●

UML

Mnemonics

A mnemonic allows the user to activate a button by holding ALT + the assigned mnemonic
character. Setting the mnemonic for a button is relatively simple, just call the the
setMnemonic(char c) method.

 Button b = new Button("Hello");
 b.setMnemonic('h');

That's it, no other coding required. One thing that's nice, if you're in Metal Look and Feel and
you a tool tip, any assigned mnemonic is appended to the tip as 'ALT+x' where 'x' = whatever
characters been assigned.

ToolTip

The demo doesn't include tool tips (the text you see when the mouse is over the component)
but assigning one is easy; just invoke the setToolTextTip(String) method.

Java Quick Reference - SCJD Study Notes - GUI Design

http://www.janeg.ca/scjd/gui/simple.html (1 of 2) [15/03/2004 8:46:50 AM]

mailto:feedback@janeg.ca

 b.setToolTextTip("The Hello button");

This will work for every component as the method is defined in JComponent (the superclass
of all Swing components).

 Resources

Java Quick Reference - SCJD Study Notes - GUI Design

http://www.janeg.ca/scjd/gui/simple.html (2 of 2) [15/03/2004 8:46:50 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - GUI Design

Design Theory

Principles of good GUI Design by James Hobart●

The Design of Graphic User Interfaces on-line course.●

The Three Models Used in Designing for Ease of Use IBM Design site.●

Building user interfaces for object-oriented systems, Part 1 thru 6 JavaWorld
articles by Allen Holub

●

Java Look and Feel Design Guidelines from Sun●

Swing

Swing by Matthew Robinson and Pavel Vorobiev. Book which can be viewed
on-line or downloaded as a Word'97 document.

●

Write high-performance RMI servers and Swing clients by Andy Krumel●

Rendering cells in Swing's JTable component by Brett Spell●

Add an undo/redo function to your Java apps with Swing by Tomer Meshorer●

Using the Swing Action Architecture by Mark Davidson (Sun article)●

Using Timers in Swing Applications by Hans Muller and Kathy Walrath (Sun
article)

●

Threads and Swing by Hans Muller and Kathy Walrath (Sun article)●

Using Dynamic Proxies to Generate Event Listeners Dynamically by Mark
Davidson (Sun article)

●

Card Panel - an Alternative to Card Layout by Hans Muller (Sun article)●

Testing Java Swing-Based Applications by J. D. Newmarch, University of
Canberra

●

Swing Resources and Articles at Sun

Creating a GUI with JFC/Swing tutorial●

Index of Swing Articles●

Java TM Look and Feel Graphics Repository, a collection of Toolbar Icons from
Sun

●

 Resource

Java Quick Reference - SCJD Study Notes - GUI Design

http://www.janeg.ca/scjd/gui/resource.html [15/03/2004 8:46:51 AM]

mailto:feedback@janeg.ca
http://axp16.iie.org.mx/Monitor/v01n03/ar_ihc2.htm
http://www.sju.edu/~jhodgson/gui/guihome.html
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/569
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-toolbox.html
http://java.sun.com/products/jlf/dg/index.htm
http://manning.spindoczine.com/sbe/
http://www.javaworld.com/javaworld/jw-04-1999/jw-04-enterprise.html
http://www-106.ibm.com/developerworks/library/j-jtable/
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-undoredo.html
http://java.sun.com/products/jfc/tsc/articles/actions/index.html
http://java.sun.com/products/jfc/tsc/articles/timer/index.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/generic-listener2/index.html
http://java.sun.com/products/jfc/tsc/articles/cardpanel/index.html
http://pandonia.canberra.edu.au/java/replayJava/paper.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/products/jfc/tsc/articles/index.html
http://developer.java.sun.com/developer/techDocs/hi/repository/

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Application Design - OOD

Note

These notes are derived from the book Object-Oriented Design in Java by
Stephen Gilbert and Bill McCarty

●

A class is a programming construct; a template used to create objects. Try to think in terms of the
object vs the class when you start a design. The design process involves building a model of an
object using abstraction.

An interface describes the services the client wants accomplished ie the object's capabilities or
functionality. A public interface describes the objects contract with users.
"Always start by designing a minimal public interface."

The implementation is how the object goes about providing the services

In Procedural programming design is based on the implementation; it is task oriented.
Object-Oriented programming design is based on the interface; it is service oriented. You need to
be concerned, initially, with what an object can do, not how it does it.

Encapsulation hides the non-essentials ie it hides the implementation details. This is not about
setting every field to private and writing public gettors and settors. You need to make sure your
public interface does not rely on how the objects behaviour is implemented. Think what would
happen if every time you upgraded your PC you had to learn a new keyboard layout! Sales would
plummet and programmers would become extinct.

When you begin to design an object, you need to act like an investigative reporter and discover the:

WHO●

WHERE, and●

WHAT●

of an object's existance.

Who is going to use the object? What clients(actors) are going to use the object you're
designing

●

Where is your object going to exist? What hardware and software is involved? Will it exist
in a framework ie inside other objects? What operating system will it run on?

●

What functions should it have from the user's point of view? What services can it be
reasonably expected to provide?

●

As a first step, describe, in a single paragraph, exactly what the object you're building should do
(requirements). This paragraph is informal and written from a user's perspective ie "I want an
object that can display the current date and the time in an analog or digital format." not "This
object uses the Java Date class and JPanel to display the date and time. The analog display blah,
blah, blah"

State and Behaviour

State

An objects attributes define its state (condition). The attributes can be defined as:

Instance fields. An instance is one object created from a class. The instance attributes are
unique to each object. For example, a Name class might have two attributes: firstName and
lastName. Every object created from the Name class would have a different value for each
attribute.

1.

Java Quick Reference - SCJD Study Notes - Application Design - OOD

http://www.janeg.ca/scjd/design/ood.html (1 of 2) [15/03/2004 8:46:51 AM]

mailto:feedback@janeg.ca
http://www.amazon.com/exec/obidos/ASIN/1571691340/electricporkchop

Class fields. A state that holds true for every object in the class. For example, an Employee
class may include an id attribute that holds the last id number and is incremented every time
a new Employee is created. The value in the id field would be common to all Employee
objects.

2.

Class constants. Pre-defined conditions that can be applied to all objects in the class. For
example, a class that defines buffer objects may have a MAX_BUFFER value.

3.

Behaviour

Design Traps
It might be easier to describe well-designed code in terms of what it is not vs what it is. The
following is a summary of such information gleaned from various sources:

Source: Object-Oriented Design in Java by Stephen Gilbert and
Bill McCarty

Data Warehouse Trap

An object is not a repository for data that the rest of your program will use! An object should
manipulate it's own data; not pass it to other parts of the program which then manipulate it.

Spectral Object Trap

An object is not a collection of methods you pass data to. Objects with no data are ghosts.

Multiple Personality Trap

An object should model only one object. Every data element and every method should contribute to
that object.

OOD OOP Resources

Java Quick Reference - SCJD Study Notes - Application Design - OOD

http://www.janeg.ca/scjd/design/ood.html (2 of 2) [15/03/2004 8:46:51 AM]

http://www.amazon.com/exec/obidos/ASIN/1571691340/electricporkchop

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Application Design - OOP

Must Read

If you read only one book before you start your SCJD assignment make it
Effective Java by Joshua Bloch. This is an excellent book that will give you new
insights into how the Java language is best utilized. It contains 57 items grouped
into categories: Creating and Destroying Objects, Classes and Interfaces,
General Programming, Threads, etc. that describe the programming idioms that
work best along with the how and why of implementing them.

●

Other sources worth investigating:

JavaIdioms●

The Essence of Object-Oriented Programming with Java and UML●

The Pragmatic Programmer●

Design Techniques Articles about Java program design by Bill Venners●

OOD OOP Resources

Java Quick Reference - SCJD Study Notes - Application Design - OOP

http://www.janeg.ca/scjd/design/oop.html [15/03/2004 8:46:51 AM]

mailto:feedback@janeg.ca
http://www.amazon.com/exec/obidos/ASIN/0201310058/electricporkchop
http://www.meurrens.org/ip-Links/java/designPatterns/wiki/javaIdioms/JavaIdioms.html
http://www.objectcentral.com/oobook/oobook.htm
http://www.pragmaticprogrammer.com/ppbook/extracts/rule_list.html
http://www.artima.com/designtechniques/index.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Case Studies

 SCJA Notes

 SCJD Notes

 Application Design

 GUI Design

 Database Processing

 Networking

 Threads

 Errors and Exceptions

 Security

 Documentation

 Projects

 Favourite Links

 About

 Feedback

SCJD Study Notes - Application Design

Modeling Tools

Use Case A semi-formal description of what a user wants from a system and
how they expect to interact with the system to bring about a
specific result. Generally people; however, a user can also be
another system or another piece of the same system. Sometimes
referred to as scenarios.

Structuring Use Cases with Goals by Alistair Cockburn●

Use and Abuse Cases(PDF) by Martin Fowler●

Modeling Essential Use Cases by Scott W. Ambler●

Roles before Objects by Doug Lea●

Dealing with Roles(PDF) by Martin Fowler●

CRC Class-Responsibility-Collaboration cards. Martin Fowler calls it
"One of the most valuable techniques for learning OO" (UML
Distilled p9)

A Laboratory For Teaching Object-Oriented Thinking by
Ward Cunningham and Kent Beck, the developers of CRC.

●

Interaction
Diagrams

Two flavours: sequence and collaboration. Useful when trying to
capture the behaviour of several objects within a single use case.
Martin Fowler recommends using State diagrams to model the
behaviour of one object across multiple use cases. (UML Distilled
p78)

Introduction to UML sequence diagrams by Scott W.
Ambler

●

Class Diagrams Classes describe objects in the domain and the static relationships
that exist between them. Detail the class data (attributes) and
operations (behaviour).

A general discussion of Class Diagrams by Martin Fowler.
Includes tips on when and how they are best utilized.

●

UML Tutorial - Class Diagrams(PDF) by Robert C. Martin●

Class Diagrams in Analysis an exercise in developing Class
Diagrams from a Use Case accompanied by lecture notes
(PDF) which explain the analysis process.

●

Design Patterns Patterns are example models of processes that crop up repeatedly
in software development. For example, developers are often faced
with problems that require moving through a list or collection. The
Iterator pattern describes a standard technique for handling
iterations.

The Design Patterns Java Companion by James Cooper●

Implementing Basic Design Patterns in Java by Doug Lea●

Speaking on the Observer pattern How can you use the
Observer pattern in your Java design? (JavaWorld)

●

On-line Analysis and Design Tutorials/Lectures
Interactive Web Tutorial for OOP by Deniz Zubair choudhury●

Java Quick Reference - SCJD Study Notes - Application Design

http://www.janeg.ca/scjd/design/resource.html (1 of 2) [15/03/2004 8:46:52 AM]

mailto:feedback@janeg.ca
http://members.aol.com/acockburn/papers/usecases.htm
http://www.martinfowler.com/articles/abuse.pdf
http://www-106.ibm.com/developerworks/components/library/tip-essentialuse.html?dwzone=components
http://g.oswego.edu/dl/rp/roles.html
http://www.martinfowler.com/apsupp/roles.pdf
http://c2.com/doc/oopsla89/paper.html
http://www-106.ibm.com/developerworks/components/library/tip-uml3/index.html?dwzone=components
http://www.aw.com/cseng/titles/0-201-89542-0/techniques/class.htm
http://www.objectmentor.com/publications/umlClassDiagrams.pdf
http://www.sts.tu-harburg.de/teaching/ws-00.01/OOA+D/Exercises/classDiagramsAnalysis.html
http://www.sts.tu-harburg.de/teaching/ws-00.01/OOA+D/3.2-ClassesInAnalysis.pdf
http://www.sts.tu-harburg.de/teaching/ws-00.01/OOA+D/3.2-ClassesInAnalysis.pdf
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://g.oswego.edu/dl/cpj/ifc.html
http://www.javaworld.com/javaworld/javaqa/2001-05/04-qa-0525-observer.html
http://homepages.unl.ac.uk/~chalkp/proj/ootutor/index.html

The Essence of Object-Oriented Programming with Java and UML by Bruce E. Wampler
(draft of book)

●

Techniques for Object Oriented Analysis and Design by Martin Fowler●

Systems Analysis and Design A series of lectures and practical exercises based on the book
Object-Oriented Systems Analysis and Design using UML by Simon Bennet, Steve McRobb,
Ray Farmer

●

Object-Oriented Analysis and Design lecture series by J.W. Schmidt, Claudia Niederée, and
Michael Skusa

●

A Commercially Robust Process for the Development of OO Software Systems(PDF)●

Free Modeling Software
DOME free modeling software from Honeywell.●

mUml from MountField Computers free for non-commercial use. Written entirely in Java
using Swing GUI. Capabilities allow you to draw all 9 UML diagrams in colour. Diagrams
can be saved as JPEGs or saved as HTML pages.

●

If you have Visio v4, v5 or Visio 2000 you can download a free Visio Stencil and Template
for UML courtesy of Navision and Paul Hruby.

●

ArgoUML free case tool; part of the Tigris.org open-source platform.●

If you're using Linux or Sun Solaris, you can download a free copy of JVision for
non-commercial use. (Sorry, if you're using Windows it will cost you.)

●

Miscellaneous
UML Reference Card Allen Holub has put together a great page with annotated UML
diagrams.

●

UML Dictionary put together by Kendall Scott, author of The Unified Modeling Language
User Guide and four UML/OOP related books.

●

OOD OOP Resources

Java Quick Reference - SCJD Study Notes - Application Design

http://www.janeg.ca/scjd/design/resource.html (2 of 2) [15/03/2004 8:46:52 AM]

http://www.objectcentral.com/oobook/oobook.htm
http://www2.awl.com/cseng/titles/0-201-89542-0/techniques/index.htm#Contents
http://www.cs.strath.ac.uk/~terzis/classes/52.234/
http://www.sts.tu-harburg.de/teaching/ws-99.00/OOA+D/entry.html
http://www.korson-mcgregor.com/freeresources/process-tutorial.pdf
http://www.htc.honeywell.com/dome/support.htm
http://www.mfcomputers.com/home.htm
http://www.navision.com/com/view.asp?categoryid=211&documentid=428,4
http://www.navision.com/com/view.asp?categoryid=211&documentid=428,4
http://argouml.tigris.org/v08/dc4.html
http://www.object-insight.com/html/purchase.html
http://www.holub.com/class/uml/uml.html
http://www.softdocwiz.com/UML.htm

Java Case Study - Mail Merge

Overview●

User Defined Types●

Quasi Pseudo Code●

Notes on Design●

Using an Abstract class●

Extending a RuntimeException●

The GUI implementation●

Solves a problem or problem domain?●

Source

The code for this study is from Developing Java Software, 2nd Edition by Russel Winder and Graham Roberts and may be
downloaded from the authors support site.

Home | Case Studies

Java Quick Reference - Case Study - Mail Merge

http://www.janeg.ca/case/mail/mail_1.html [15/03/2004 8:46:52 AM]

http://www.amazon.com/exec/obidos/ASIN/0471606960/electricporkchop
http://www.dcs.kcl.ac.uk/DevJavaSoft/SecondEdition/SourceCode/MailMerge/Graphic/

Java Case Study - Mail Merge - Overview

Problem Statement

Implement an application, in Java, that will merge an address file with a letter file. The letter file is a LaTex document. The
Java application will invoke LaTex via the operating system. The Latex application will process and print each newly
created document.

Address File Structure

The address file will contain element groups tagged as follows:

 <NAME>
 <TELEPHONE>
 <FAX>
 <EMAIL>
 <ADDRESS>

The address element must be the last in the group. Street, city and country information must be separated by commas. If the
same element appears more than once within a group, the value of the last element is used.

Sample LaTex File

 \documentclass{rlw_letter}

 \begin{document}
 \begin{letter}{<NAME>\\
 <ADDRESS>}
 \opening{Dear <NAME>,}

 This is just some text to show where the text of the letter would be.

 \closing{Yours sincerely,}
 \end{letter}
 \end{document}

Home | Case Studies | TOC | Next

Java Quick Reference - Mail Merge - Overview

http://www.janeg.ca/case/mail/mail_2.html [15/03/2004 8:46:53 AM]

LaTex

LaTex is a typesetting system used in the production of technical and scientific documentation.

For more information see The LaTex Home Page

LaTex

http://www.janeg.ca/case/mail/latex.html [15/03/2004 8:46:53 AM]

http://www.latex-project.org/

Java Case Study - Mail Merge - User Defined Types

User Defined Types

Full UML Class Diagram

The application is implemented with the following user defined types:

MailMerge●

CommandServer

UNIXCommandServer❍

MSWindowsCommandServer❍

●

FailedCommandException●

MessageBox●

FilesSelector

FilesSelector$BrowseButtonActionListener❍

●

Report●

ExitActionListener●

ExitWindowAdapter●

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - Mail Merge - User Defined Types

http://www.janeg.ca/case/mail/mail_3.html [15/03/2004 8:46:53 AM]

http://www.janeg.ca/case/mail/uml.jpg

http://www.janeg.ca/case/mail/uml.jpg [15/03/2004 8:46:54 AM]

http://www.janeg.ca/case/mail/MailMerge.jpg

http://www.janeg.ca/case/mail/MailMerge.jpg [15/03/2004 8:46:54 AM]

http://www.janeg.ca/case/mail/CommandServer.jpg

http://www.janeg.ca/case/mail/CommandServer.jpg [15/03/2004 8:46:55 AM]

http://www.janeg.ca/case/mail/UNIXCommandServer.jpg

http://www.janeg.ca/case/mail/UNIXCommandServer.jpg [15/03/2004 8:46:55 AM]

http://www.janeg.ca/case/mail/MSWindowsCommandServer.jpg

http://www.janeg.ca/case/mail/MSWindowsCommandServer.jpg [15/03/2004 8:46:56 AM]

http://www.janeg.ca/case/mail/FailedCommandException.jpg

http://www.janeg.ca/case/mail/FailedCommandException.jpg [15/03/2004 8:46:56 AM]

http://www.janeg.ca/case/mail/MessageBox.jpg

http://www.janeg.ca/case/mail/MessageBox.jpg [15/03/2004 8:46:57 AM]

http://www.janeg.ca/case/mail/FileSelector.jpg

http://www.janeg.ca/case/mail/FileSelector.jpg [15/03/2004 8:46:57 AM]

http://www.janeg.ca/case/mail/BrowseButton.jpg

http://www.janeg.ca/case/mail/BrowseButton.jpg [15/03/2004 8:46:58 AM]

http://www.janeg.ca/case/mail/Report.jpg

http://www.janeg.ca/case/mail/Report.jpg [15/03/2004 8:46:58 AM]

http://www.janeg.ca/case/mail/ExitActionListener.jpg

http://www.janeg.ca/case/mail/ExitActionListener.jpg [15/03/2004 8:46:58 AM]

http://www.janeg.ca/case/mail/ExitWindowAdapter.jpg

http://www.janeg.ca/case/mail/ExitWindowAdapter.jpg [15/03/2004 8:46:59 AM]

Java Case Study - Mail Merge - Quasi Pseudo-Code

When MailMerge is started it ...

 gets an instance of CommandServer based on the operating system
 if(args == 0) {
 creates another instance of MailMerge
 creates a FileSelector, passing it the new MailMerge instance
 the FileSelector captures user input: letterFileName, addressFileName,
printerName
 and updates the fields in the MailMerge instance
 destroys itself when the user dismisses it
 creates a Report to display values input by user
 destroys itself when the user dismisses it
 } else {
 retrieves the file and printer names from the command line arguments
 }
 opens the files
 reads the letter file into memory
 for(each record in the address file) {
 reads a record
 displays the values
 creates a temporary file
 merges the record with the letterfile
 writes the merged result to the temporary file
 sends commands to the operating system via the CommandServer to
 create a DVI file
 convert the DVI file to a PostScript file
 spool the postscript file to the printer
 delete the temporary files
 }
 closes the address file
 exits

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - Mail Merge - Quasi Pseudo Code

http://www.janeg.ca/case/mail/mail_4.html [15/03/2004 8:46:59 AM]

Java Case Study - Mail Merge - Notes on Design

Text and GUI Modes

The application was designed to be run in text mode. A GUI interface was added later. This involved having MailMerge
extend JFrame. The main window, however, is never displayed. The original class spawns another instance of
MailMerge which acts as the parent of the GUI elements.

If MailMerge is started with no command line parameters a FileSelector dialog is displayed. The user enters the file
names or clicks a browse button which displays a JFileChooser dialog. When finished, he clicks ok. At that point the input
is saved to the MailMerge instance originally passed to FileSelector. Because MailMerge has only static fields,
updating an instance of MailMerge effectively updates the original MailMerge (remember, only one copy of a static
field exists for all instances of the class).

Java Libraries

Standard Java library classes were used for file handling:

 java.io.BufferedReader java.io.BufferedWriter
 java.io.File java.io.FileReader java.io.FileWriter
 java.io.FileNotFoundException java.io.IOException

All of these are listed using import-by-type versus import-on-demand statements. (See the import statements in the
MailMerge source code).

The standard classes String and StringBuffer were used for string manipulation.

Standard Swing classes were extended to create all the GUI elements.

javax.swing.JFrame javax.swing.JDialog javax.swing.JOptionPane
javax.swing.JButton javax.swing.JFileChooser javax.swing.JPanel
javax.swing.JTextField javax.swing.JLabel

Event Listeners

When a listener is required for an event specific to the class it is implemented as an anonymous class.

For example, the listener attached to the okButton in FileSelector is declared as an anonymous class implementing the
ActionListener interface (see the source code for FileSelector)

When a listener is required for an event specific to the class but can be used by more than one component belonging to
the class, it is implemented as an inner class.

For example, a FileSelector dialog has two browse buttons both of which, when clicked, result in a JFileChooser dialog
being displayed. The BrowseButtonActionListener class is declared within the FileSelector class. It implements the
ActionListener interface and provides a constructor that takes a JTextField. The value of the parameter is saved so that
each new instance of the listener knows which field it must set.

When a listener is required for a class but its functionality is not specific to the class (it has a behaviour that could apply
in other situations) it is implemented as a separate class.

For example, the ExitWindowAdapter, which simply calls System.exit(0), is implemented as a separate class; allowing it to
be re-used by other classes.

Java Quick Reference - Case Study - Mail Merge - Notes on Design

http://www.janeg.ca/case/mail/mail_5.html (1 of 2) [15/03/2004 8:46:59 AM]

http://www.janeg.ca/case/mail/images/fileSelector.jpg
http://www.janeg.ca/case/mail/images/fileChooser.jpg
http://www.janeg.ca/case/mail/MailMerge.java
http://www.janeg.ca/case/mail/FilesSelector.java
http://www.janeg.ca/case/mail/ExitWindowAdapter.java

Event listeners are named according to the interface they implement or the adapter they extend and the component they
will be registered with.

For example, rather than name the listener responsible for closing a window as ExitWindow it is named
ExitWindowAdapter. From the name it is evident that the class will cause a window componet to be exited and that the
class extends the WindowAdapter class versus implementing WindowListener interface.

Passing parameters

All method parameters (except those in MailMerge.editMarkers()) are passed as final. It is considered good practice to pass
parameters as final if the method will not modify the value in any way. The use of final signals this intent. Also, it allows the
compiler to optimize the code for better performance.

Passing commands to the operating system

CommandServer is implemented using the Singleton pattern. It has a private constructor. The only way to instantiate the
class is by calling the public static getInstance() method. The first call to the method creates an instance of the class and
assigns it to a private static field, instance. Subsequent calls to getInstance() will return the same instance.

An instance specific to the operating system is required as:

there is no wildcard expansion unless the operating systems command shell is explicitly started1.

operating systems have different command syntaxes2.

the Java method used to pass commands to the operating system does not start a command shell3.

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - Mail Merge - Notes on Design

http://www.janeg.ca/case/mail/mail_5.html (2 of 2) [15/03/2004 8:46:59 AM]

http://www.janeg.ca/case/mail/CommandServer.java

Java Case Study - Mail Merge - Using an Abstract class

CommandServer was implemented as an abstract class. Why?

In this instance, the bulk of the code is identical across operating systems. The subclasses UNIXCommandServer and
MSWindowsCommandServer are specializations. Had the type been defined as an interface a good portion of the code
would need to be repeated in each implementation class.

An alternative would have been to define CommandServer as an interface and provide a separate CommandServerImpl
class that defined the common code. This skeletal implemention could then be extended by subclasses.

Not sure the alternative would buy anything in this example. Especially if you decided to add additional functionality. Right
now the class has two methods printFile() and deleteFiles(). Operating systems offer a vast array of commands
and it's highly likely that one day you'll want to add more methods to handle them. If CommandServer was defined as an
interface adding methods would break existing code; all types based on the interface would need to add implementation for
the new methods.

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - Mail Merge - Using an Abstract class

http://www.janeg.ca/case/mail/mail_6.html [15/03/2004 8:47:01 AM]

Java Case Study - Mail Merge - Extending RuntimeException

Generally you hear that you should extend Exception versus RuntimeException when you define your own exceptions.
RuntimeExceptions are used for exceptions that an application cannot reasonably be expected to handle.

The FailedCommandException is thrown when a CommandServer object cannot execute LaTex, print the file or delete
temporary files. The circumstances surrounding the events are a result of the operating system setup. LaTex may not be
installed, GhostScript may not be installed, the user may not have delete authority for the drive he's accessing.

The application cannot be reasonably expected to handle these situations therefore the choice of extending
RuntimeException versus Exception is justified.

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - Mail Merge - Extending RuntimeException

http://www.janeg.ca/case/mail/mail_7.html [15/03/2004 8:47:02 AM]

Java Case Study - Mail Merge - The GUI implementation

The handling of the GUI is rather awkward. The initial MailMerge window is never displayed and a second MailMerge
instance is created and passed to GUI components. This method also hides the manner in which the required fields in the
original MailMerge are updated; it's not intuitive.

One possible alternative would be to create a seperate object to hold the data input fields, add a field of that data type, add a
JFrame field and add a second constructor that creates the JFrame and takes the new object as a parameter. The JFrame
would be used as the parent of any GUI components and, if the application is started in text mode, no GUI elements would
be created.

Trying to refactor a program helps you test your understanding of how it works. Tried the above as a refactoring exercise,
revising the code as follows:

Created a new class, MailMergeInputFields1.

Modified the FileSelector and Report classes to take a MailMergeInputFields object and a JFrame object instead of a
MailMerge object. Changed all references in the classes to use the new object.

2.

Modified the MailMerge class:

removed the inheritance to JFrame❍

replaced the indivual fields letterFileName, addressFileName and printerName with a
MailMergeInputFields object

❍

removed the MailMerge instance and added a JFrame reference.❍

changed all references in the MailMerge class to use the new MailMergeInputFields object and JFrame
reference where necesssary.

❍

3.

Made a few other minor changes: split the code in main() into two separate methods, setup() and processFiles()
and modified the terminate() method so it could be used as a single exit point from the application. The revised class
files are:

MailMergeInputFields●

MailMerge Note: the commands directed to LaTex have been commented out as it is not installed on my system.●

FilesSelector●

Report●

Revised UML Diagram●

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - Mail Merge - The GUI implementation

http://www.janeg.ca/case/mail/mail_8.html [15/03/2004 8:47:02 AM]

http://www.janeg.ca/case/mail/refactor/MailMergeInputFields.java
http://www.janeg.ca/case/mail/refactor/MailMerge.java
http://www.janeg.ca/case/mail/refactor/FilesSelector.java
http://www.janeg.ca/case/mail/refactor/Report.java

http://www.janeg.ca/case/mail/MailMergeInputFields.jpg

http://www.janeg.ca/case/mail/MailMergeInputFields.jpg [15/03/2004 8:47:02 AM]

http://www.janeg.ca/case/mail/FileSelector_1.jpg

http://www.janeg.ca/case/mail/FileSelector_1.jpg [15/03/2004 8:47:03 AM]

http://www.janeg.ca/case/mail/Report_1.jpg

http://www.janeg.ca/case/mail/Report_1.jpg [15/03/2004 8:47:03 AM]

http://www.janeg.ca/case/mail/MailMerge_1.jpg

http://www.janeg.ca/case/mail/MailMerge_1.jpg [15/03/2004 8:47:04 AM]

http://www.janeg.ca/case/mail/uml_1.jpg

http://www.janeg.ca/case/mail/uml_1.jpg [15/03/2004 8:47:06 AM]

Java Case Study - Mail Merge - Solves a problem or a
problem domain?

Does the example solve a specific problem or solve a problem domain?

As the original problem domain was defined as "create a system to merge addresses with a LaTex document" the application
does, for the most part, provide a solution for the domain.

There are hard-coded elements that narrow the domain to a Windows system which uses Ghostview to print PostScript files
and has the sofware stored at c:/GSTools/GSView/. If the code was used on a system that stored Ghostview in another
location it would fail. The code would have to be altered either by hard-coding the new location (not a recommended
solution) or by providing the user a means to input the required location.

Had the problem domain been defined in wider terms i.e. as "develop a mail merge system", then no, the application would
not provide a solution for the domain.

The scope of a problem domain can be as narrow or as wide as the user wants. One of the key problems in establishing
requirements is determining exactly what the problem domain is. If the person requesting the system and the person
desigining the system have different ideas concerning what is inside the domain then the resulting system will either fail to
meet user expectations or go beyond user expectations. In the first instance you'll have an unhappy user. You may also have
an unhappy user in the second instance, especially if you could have produced code that met the users expectations in half
the time and at half the cost.

Home | Case Studies | Previous | TOC

Java Quick Reference - Case Study - Mail Merge - Solves a problem or problem domain?

http://www.janeg.ca/case/mail/mail_9.html [15/03/2004 8:47:06 AM]

Java Case Study - JCalculator

Overview●

User Defined Types●

Where the action is●

Command Behaviour●

Unary Function Behaviour●

Binary Function Behaviour●

Summary●

Source

The code for this study is from Sum it up with JCalculator an article by Claude Duguay in JavaPro, August 2001, Vol.5 No.
8,and may be downloaded from Devx

Home | Case Studies

Java Quick Reference - Case Study - JCalculator

http://www.janeg.ca/case/jcalc/jcalc_1.html [15/03/2004 8:47:07 AM]

http://archive.devx.com/free/codelib/view.asp?id=728525

Java Case Study - JCalculator - Overview

Problem Statement

Implement a numerical calculator that can easily be added to any Swing application. Provide basic arithmetic and
trigonometric functions along with features found on most standard calculators: clear an entry, clear all entries, memory
clear, memory recall, etc. The application can be started in simple or expanded mode.

GUI Simple View

GUI - Exanded View

Home | Case Studies | TOC | Next

Java Quick Reference - Case Study - JCalculator - Overview

http://www.janeg.ca/case/jcalc/jcalc_2.html [15/03/2004 8:47:08 AM]

Java Case Study - JCalculator - User Defined Types

User Defined Types

Full UML Class Diagram

The application is implemented with the following user defined types:

JCalculator - defines a calculator object●

CalculatorButton - defines a button used by the calculator object●

CalculatorCommands - defines the commands associated with calculator buttons●

CalculatorField - defines objects used to display information in the calculator●

CalculatorStack - defines an object to hold the intermediary results of calculator button operations●

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - JCalculator - User Defined Types

http://www.janeg.ca/case/jcalc/jcalc_3.html [15/03/2004 8:47:08 AM]

http://www.janeg.ca/case/jcalc/images/FullUml.jpg

http://www.janeg.ca/case/jcalc/images/FullUml.jpg (1 of 2) [15/03/2004 8:47:09 AM]

http://www.janeg.ca/case/jcalc/images/FullUml.jpg

http://www.janeg.ca/case/jcalc/images/FullUml.jpg (2 of 2) [15/03/2004 8:47:09 AM]

http://www.janeg.ca/case/jcalc/images/JCalculator.jpg

http://www.janeg.ca/case/jcalc/images/JCalculator.jpg [15/03/2004 8:47:10 AM]

http://www.janeg.ca/case/jcalc/images/CalculatorButton.jpg

http://www.janeg.ca/case/jcalc/images/CalculatorButton.jpg [15/03/2004 8:47:10 AM]

http://www.janeg.ca/case/jcalc/images/CalculatorCommands.jpg

http://www.janeg.ca/case/jcalc/images/CalculatorCommands.jpg [15/03/2004 8:47:11 AM]

http://www.janeg.ca/case/jcalc/images/CalculatorField.jpg

http://www.janeg.ca/case/jcalc/images/CalculatorField.jpg [15/03/2004 8:47:11 AM]

http://www.janeg.ca/case/jcalc/images/CalculatorStack.jpg

http://www.janeg.ca/case/jcalc/images/CalculatorStack.jpg [15/03/2004 8:47:11 AM]

Java Case Study - JCalculator - Where the action is

Where the action is

The design utilizes the Command Pattern with all the action being handled by CalculatorButton. The operation
performed is determined by the buttons command object. The CalculatorButton constructor takes the following form:

 public CalculatorButton(String text,
 JCalculator calculator,
 CalculatorCommands.Command command)

where, String is the buttons label text, JCalculator is a reference to the current calculator object and
CalculatorCommands.Command is a command object.

CalculatorCommands.Command is an interface defined within the CalculatorCommands class. The
CalculatorCommands class contains the definitions for three other interfaces: Function, Unary and Binary. The
Function interface extends the Command interface and Unary and Binary extend Function. Individual command
objects directly implement Command, Unary or Binary. All of them are of type CalculatorCommands.Command.
(see CalculatorCommands)

Each command object implements the exec() method declared in the Command interface. In the example, all the
individual commands i.e. One, Plus, Clear, etc. are declared as static member classes of
CalculatorCommands. Each calculator button is given a specific command object. For example, code that adds a
CalculatorButton to the JCalculator object is:

 add(new CalculatorButton("8", this, new CalculatorCommands.Eight()));

where "8" is the label that will appear on the button, this is the current JCalculator object and new
CalculatorCommands.Eight() creates the command object that will be associated with the CalculatorButton.
When a calculator button is clicked, an ActionEvent is generated and listeners are notified. A CalculatorButton
object acts as it's own listener by implementing the actionPerfomed() method of the ActionListener interface.

The implementation of the Command pattern in this example is a little unusual. Generally, the actionPerfomed()
method in a Command pattern example is very simple:

 public void actionPerformed(ActionEvent e){
 command.exec();
 }

where all the behaviour associated with the button would be implemented in the exec() method of the command object. In
this example, the button itself is controlling some of the behaviour.

 public void actionPerformed(ActionEvent event)
 {
 if (command != null)
 {
 if (command instanceof CalculatorCommands.Unary)
 {
 evaluate();
 CalculatorStack stack = calculator.getStack();
 stack.pushFunction((CalculatorCommands.Function)command);
 evaluate();
 }

Java Quick Reference - Case Study - JCalculator - Where the action is

http://www.janeg.ca/case/jcalc/jcalc_4.html (1 of 2) [15/03/2004 8:47:12 AM]

http://www.patterndepot.com/put/8/command.pdf

 if (command instanceof CalculatorCommands.Binary)
 {
 evaluate();
 CalculatorField field = calculator.getField();
 CalculatorStack stack = calculator.getStack();
 stack.pushNumber(field.getNumber());
 stack.pushFunction((CalculatorCommands.Function)command);
 field.clearField();
 }
 if (!(command instanceof CalculatorCommands.Function))
 {
 command.exec(calculator);
 }
 }
 // Handle '='
 else evaluate();
 }

Command logic is being handled within the actionPerformed() method and a portion of the command behaviour is
implemented in the CalculatorButton.evaluate() method rather than by the command object itself.

 protected void evaluate()
 {
 CalculatorStack stack = calculator.getStack();
 if (!stack.isEmpty() && stack.isFunction())
 {
 CalculatorField field = calculator.getField();
 CalculatorCommands.Function function = stack.popFunction();
 stack.pushNumber(field.getNumber());
 function.exec(calculator);
 field.setNumber(stack.popNumber());
 }
 }

This makes it a little more difficult to work out what is actually happening when a calculator button is clicked on. UML
Sequence diagrams can help when you're trying to sort out interactions between objects.

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - JCalculator - Where the action is

http://www.janeg.ca/case/jcalc/jcalc_4.html (2 of 2) [15/03/2004 8:47:12 AM]

Java Case Study - JCalculator - Command Behaviour

Command Behaviour

Command objects which are not Functions (One, Two, Clear, etc) directly implement the
CalculatorCommands.Command interface. When a button associated with a Command type is clicked, the
actionPerformed() method invokes the objects exec() method; the CalculatorButton.evaluate() method
is not invoked.

From the above we can see that

when an ActionEvent is triggered it is sent to a CalculatorButton1.

the button invokes the exec() method of its assoicated command object, passing it a reference to the calculator
object

2.

the command object uses the reference to the calculator object to get a reference to the CalculatorField being
used to display the numbers entered by the user and the results of any calculations

3.

the command object then uses the field reference to set the text in the field or add a digit to the text already being
displayed

4.

Let's say a user clicks on the "1" calculator button. This generates an ActionEvent and the button is notified; invoking its
actionPerfomed() method. The method checks to make sure the command associated with itself is not a Function
and calls the exec() method of it's Command object. In this case, the object is type One. The exec() method in the One
class is implemented as follows:

 public void exec(JCalculator calculator)
 {
 CalculatorField field = calculator.getField();
 field.addDigit(1);
 }

The addDigit() of CalculatorField actually concatenates the digit '1' to any text currently being displayed. For
example, what we see before we click on the '1' button is:

Java Quick Reference - Case Study - JCalculator - Command Behaviour

http://www.janeg.ca/case/jcalc/jcalc_5.html (1 of 2) [15/03/2004 8:47:13 AM]

What we see after clicking the '1' button is:

That's fairly straight forward. Unary function commands are a bit more complicated.

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - JCalculator - Command Behaviour

http://www.janeg.ca/case/jcalc/jcalc_5.html (2 of 2) [15/03/2004 8:47:13 AM]

Java Case Study - JCalculator - Unary Function Behaviour

Unary Function Behaviour

Every button has an associated CalculatorCommands.Command object reference and a JCalculator reference.

Lets assume the calculator button that was clicked has a Sqrt command of type CalculatorCommands.Sqrt which implements Unary. The
code for Sqrt is:

 public static class Sqrt implements Unary
 {
 public void exec(JCalculator calculator)
 {
 CalculatorStack stack = calculator.getStack();
 stack.pushNumber(Math.sqrt(stack.popNumber()));
 }
 }

The Sqrt button is clicked, an ActionEvent is raised and the buttons actionPerformed() method is invoked.

Java Quick Reference - Case Study - JCalculator - Unary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_6.html (1 of 4) [15/03/2004 8:47:15 AM]

the actionPerformed() method checks its objects (the buttons) command object type and determines its of type
CalculatorCommands.Unary

1.

it invokes its own evaluate() method2.

the buttons reference to the calculator object is used to get a reference to the calculators stack3.

the stack isEmpty() method is invoked and returns 'true' so evaluate() returns control to the actionPerformed() method4.

the actionPerformed() method retrieves a reference to the calculators stack through the buttons calculator reference5.

the buttons command object (in this case aSqrt) is pushed onto the stack6.

the buttons evaluate() method is again invoked7.

a reference to the calculators stack is retrieved8.

this time the stack is not empty and its top object is a function (the Sqrt object)9.

the buttons calculator reference is used to retrieve a reference to the calculators display field10.

the Sqrt object is popped off the calculators stack11.

the field reference is used to retrieve the number currently displayed12.

the retrieved number is pushed onto the stack13.

the Sqrt objects exec() method is invoked and a copy of the buttons calculator reference is passed as an argument14.

the Sqrt object uses its calculator reference (the one passed to exec()) to get a reference to the calculator stack15.

the number pushed onto the stack in evaluate() is popped off the stack and used as an argument to Math.sqrt()16.

the result returned by Math.sqrt() is pushed onto the stack17.

control returns to the buttons evaluate() method18.

the result pushed onto the stack by the Sqrt object is retrieved and passed to the calculator field by invoking the fields setNumber()
method

19.

the evaluate() method returns control to the actionPerformed() method20.

there is nothing else to do21.

Whew! There are an awful lot of busy objects! The actual job of providing the square of a number is handled by the command object, Sqrt,
but the responsibility for getting everything ready for the Sqrt object is being handled by the button object.

Hmmm ... still not all that clear; lets try to think of it as a conversation between actors. The cast:

Button - a CalculatorButton●

Calculator - a JCalculator that belongs to Button●

Sqrt - a CalculatorCommands.Unary that belongs to Button●

Math.sqrt - a friend of Sqrt's●

ActionPerformed - Button's helper●

Evaluate - Button's helper●

Stack - a CalculatorStack that belongs to Buttons calculator●

Display - a CalculatorField that belongs to Buttons calculator●

 Button: "Hey, I've just been clicked! ActionPerformed, you need to
get to work!"

 ActionPerformed: "Ok. Do we have a command? Oh yeah, a Sqrt and its a Unary.
Evaluate
 can you check things for me?"

 Evaluate: "Sure thing. Calculator, pass me your Stack for a minute."

 Calculator: "Here he is." [Hands Stack to Evaluate]

 Evaluate: "Oops .. its empty nothing for me to do. ActionPerformed,
it's up to you."

 ActionPerformed: "Calculator, let me have your Stack. Stack, here, take a copy
of Sqrt."
 [Hands Sqrt to Stack] "Ok Evaluate, your turn again."

Java Quick Reference - Case Study - JCalculator - Unary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_6.html (2 of 4) [15/03/2004 8:47:15 AM]

 Evaluate: "Calculator, can you let me see Stack again?"

 Calculator: "Sure." [Hands Stack to Evaluate]

 Evaluate: "Alright Stack are you empty?"

 Stack: "Nope."

 Evaluate: "Do you have a function?"

 Stack: "Let me see, yup, I got a function on top of me."

 Evaluate: "Great. Calculator, can you give me your Display?"

 [Calculator hands Display to Evaluate]

 Evaluate: "Stack, let me have that function and Display, you give Stack
 the number you're holding."

 [Stack hands Sqrt to Evaluate and Display gives Stack a
number]

 Evaluate: "Ok Sqrt, you do your thing. Oops, here you need to talk to
Calculator"
 [Hands Sqrt a connection to Calculator]

 Sqrt: "Calculator, give me Stack please."

 [Calculator hands over Stack]
 Stack (sotto voice): "Hey, I'm tired of being man handled! Geesh, don't you guys
have
 anything better to do!"

 Sqrt: "Stack, give me the number your holding. I need to pass it to
Math.sqrt."

 Math.sqrt: "Here Sqrt, I did my thing with the number, you can have it
back now."

 Sqrt: "Here you go Stack ... take number back now. Hey Evaluate,
I'm finished."

 Evaluate: "Stack, let me have the number Sqrt just gave you." [Stack
hands
 the number to Evaluate]. "Display, can you show this to
everyone?"

 Display: "Sure thing." [Display takes the number and holds it up for
all
 to see]

 Evaluate: "Ok ActionPerformed, I'm finished!"

 ActionPerformed: "Button, we're all done now."

 Button: "Thanks guys. What a team!"

 [The End]

That's a little clearer. The calculator is basically acting as a holder for all the objects. The actionPerformed() and evaluate()
methods in CalculatorButton are directing events and the actual work/function is being handled by the

Java Quick Reference - Case Study - JCalculator - Unary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_6.html (3 of 4) [15/03/2004 8:47:15 AM]

CalculatorCommands.Command object.

So what happens if the command object is a Binary function?

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - JCalculator - Unary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_6.html (4 of 4) [15/03/2004 8:47:15 AM]

Java Case Study - JCalculator - Binary Function Behaviour

Binary Function Behaviour

Hmmm .. the stack is being setup but no calculations are happening. How does a Binary function get executed? You'd expect the user to enter
another digit followed by "=". Lets take another look at actionPerformed().

public void actionPerformed(ActionEvent event)
 {
 if (command != null)
 {
 if (command instanceof CalculatorCommands.Unary)
 {
 evaluate();
 CalculatorStack stack = calculator.getStack();
 stack.pushFunction((CalculatorCommands.Function)command);
 evaluate();
 }
 if (command instanceof CalculatorCommands.Binary)
 {
 evaluate();
 CalculatorField field = calculator.getField();
 CalculatorStack stack = calculator.getStack();
 stack.pushNumber(field.getNumber());
 stack.pushFunction((CalculatorCommands.Function)command);
 field.clearField();
 }
 if (!(command instanceof CalculatorCommands.Function))
 {

Java Quick Reference - Case Study - JCalculator - Binary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_7.html (1 of 4) [15/03/2004 8:47:17 AM]

 command.exec(calculator);
 }
 }
 // Handle '='
 else evaluate();
 }

It looks like "=" is not a Command object. Only the evaluate() method comes into play. Ok, so let's say the user enters '1 + 1 =', what happens?

This time there is something on the stack; the '1' and '+' placed there earlier, so evaluate() pops off the function, pushes the current number (the
one in the display area) onto the stack and then invokes the functions exec() method.

Then Binary.exec() method then retrieves both the numbers from the stack and performs its operation, pushing the result back onto the stack.

The evaluate() method then pops the result off the stack and calls the display fields setNumber() method; which shows the result of the
operation to the user.

But what happens if '=' isn't pressed after the second digit is entered? What if the user enters '1 + 1 + 2' before hitting '='?

Java Quick Reference - Case Study - JCalculator - Binary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_7.html (2 of 4) [15/03/2004 8:47:17 AM]

Almost the same thing as happens when '=' is pressed except that the previous function is evaluated and the result of the operation is placed on
the stack followed by the current function. The '1 + 1 + 2' would result in the following:

 User Enters Field Display Stack
 1 1 empty
 + blank + 1
 1 1 + 1
 + blank + 2 (result of previous stack

Java Quick Reference - Case Study - JCalculator - Binary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_7.html (3 of 4) [15/03/2004 8:47:17 AM]

value '1'
 '+' current display
value of '1')
 2 2 + 2
 = 4 empty (previous result value is
added to
 current display value)

Home | Case Studies | Previous | TOC | Next

Java Quick Reference - Case Study - JCalculator - Binary Function Behaviour

http://www.janeg.ca/case/jcalc/jcalc_7.html (4 of 4) [15/03/2004 8:47:17 AM]

Java Case Study - JCalculator - Summary

Summary

Well, originally I thought that this was an elegant, straight forward design. After working through the sequence diagrams
though, I now have my doubts. I don't think working out code logic should be quite that difficult!

Admittedly, the code was not written as a demonstration of design technique; the author provided it as a plug-in component
that can be used in any program; and it does work quite nicely.

Home | Case Studies | Previous | TOC |

Java Quick Reference - Case Study - JCalculator - Summary

http://www.janeg.ca/case/jcalc/jcalc_8.html [15/03/2004 8:47:17 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Overview
the package contains three main groups of classes and interfaces

classes to build data streams1.

classes and interfaces for serialization2.

classes and interfaces for working with the file system3.

●

Data Streams (JCL1)

data streams that read values from a data source are input streams●

data streams that write values to a data repository are output streams●

the data can be either byte or character values●

DataStream SuperClasses

Byte Streams Character Streams

abstract class InputStream abstract class Reader

abstract class OutputStream abstract class Writer

there are two classes which convert bytes to characters

 class InputStreamReader extends Reader
 class OutputStreamWriter extends Writer

●

data containers, for example files, usually provide methods which return a stream for either
reading or writing

●

data streams can be chained together●

Filter Streams

filter streams perform some processing or filtering as the data is passed through●

a filter ouput stream performs the processing before the data is written out●

a filter input stream performs the processing after the data is read from its original source●

FilterStream SuperClasses

Byte Streams Character Streams

class FilterInputStream class FilterReader

class FilterOutputStream class FilterWriter

there are number of filter streams for both byte streams

 BufferedInputStream BufferedOutputStream
 DataInputStream DataOutputStream
 LineNumberInputStream PrintStream
 PushbackInputStream

●

and character streams

 BufferedReader PrintWriter
 LineNumberReader
 PushbackReader

●

Java Quick Reference - java.io Package

http://www.janeg.ca/scjp/io/overview.html (1 of 2) [15/03/2004 8:47:19 AM]

mailto:feedback@janeg.ca

In-Memory Streams

there are also classes for reading and writing data held in memory

 ByteArrayInputStream CharArrayReader
 ByteArrayOutputStream CharArrayWriter
 StringReader
 StringWriter

●

the StringReader/Writer classes read data from a StringBuffer object●

Pipes

there are classes that allow you to build streams that operate between threads

 PipedInputStream PipedReader
 PipedOutputStream PipedWriter

●

Files

there are a number of classes for working with the file system

 File
 FileDescriptor

 FileInputStream FileReader
 FileOutputStream FileWriter
 FilenameFilter
 FilePermission RandomAccessFile

●

note that File, FileDescriptor and RandomAccessFile are direct subclasses of Object●

Note

The File class can be used to create directories

Serialization (JCL1)

serialization is the process of converting an object to a stream of bytes in such a manner that
the original object can be rebuilt (lets you write an object to a file or other data container)

●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package

http://www.janeg.ca/scjp/io/overview.html (2 of 2) [15/03/2004 8:47:19 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Data Streams
Suns Java Tutorial on I/O also breaks up the classes into Data Sink Streams and Data
Processing Streams

●

a sink is a specialized data container ie strings, files, pipes●

Sink Type Character Streams Byte Streams

Memory CharArrayReader,
CharArrayWriter

ByteArrayInputStream,
ByteArrayOutputStream

StringReader,
StringWriter

StringBufferInputStream

Pipe PipedReader,
PipedWriter

PipedInputStream,
PipedOutputStream

File FileReader,
FileWriter

FileInputStream,
FileOutputStream

data processing streams perform some type of operation ie buffering or character encoding●

Process CharacterStreams Byte Streams

Buffering BufferedReader,
BufferedWriter

BufferedInputStream,
BufferedOutputStream

Filtering FilterReader,
FilterWriter

FilterInputStream,
FilterOutputStream

Converting
between
Bytes and
Characters

InputStreamReader,
OutputStreamWriter

Concatenation SequenceInputStream

Object
Serialization

 ObjectInputStream,
ObjectOutputStream

Data Conversion DataInputStream,
DataOutputStream

Counting LineNumberReader LineNumberInputStream

Peeking Ahead PushbackReader PushbackInputStream

Printing PrintWriter PrintStream

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Data Streams

http://www.janeg.ca/scjp/io/datastreams.html [15/03/2004 8:47:19 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Character Streams
Reader and Writer are the abstract superclasses for all character streams.●

Note: Classes shown in 'yellow' are abstract.
Items shown in 'gray' read and write from data sinks.

Images are from the Sun Tutorial on I/O

character streams can read or write any Unicode character set.●

Byte streams are limited to ISO-Latin-1 8-bit encoding.●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Character Streams

http://www.janeg.ca/scjp/io/char.html [15/03/2004 8:47:20 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Byte Streams
use InputStream and OutputStream classes to read 8-bit bytes●

Note:Classes in 'yellow' are abstract.
Classes in 'gray' read and write to data sinks.

Images from Sun Java I/O tutorial

ObjectInputStream and ObjectOutputStream are used for serialization●

!!! Warning !!!

These classes cannot be used to read or write Unicode characters.

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Byte Streams

http://www.janeg.ca/scjp/io/byte.html [15/03/2004 8:47:20 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - File Class
used to access file and directory objects using the file-naming, path conventions of the
implementing operating system

●

the class has three constructors

File(String pathname)
File(String parent, String child)
File(File parent, String child)

where,
 parent is the pathname
 child is the filename

●

used to create an instance of a File BUT does not actually create a file

// does not create a file on the system
new File("test.txt");

●

however, you can use the createNewFile() method

File f = new File("test.txt");
// returns 'false' if file exists
f.createNewFile();

●

or, the method createTempFile() which creates the file in the default temporary directory
using specified file extensions

●

the class has four CONSTANTS which define properties of the file conventions on the
operating system

char separatorChar
the field is initialized to hold the system separator
/ for UNIX
\ for Win32
: for Mac

String separator
a string representation of the separatorChar

char pathSeparator
initialized to hold the character used by the system to separate file names in a list
: for UNIX
; for Win32

String pathSeparator
string representation of the pathSeparator character

●

FileName Methods

there are a number of methods for retreiving filenames, paths, etc

getAbsolutePath() getAbsoluteFile()
getCanonicalPath() getCanonicalFile()
getName()
getParent() getParentFile()
getPath()
compareTo()

●

Java Quick Reference - java.io Package - File Class

http://www.janeg.ca/scjp/io/file.html (1 of 3) [15/03/2004 8:47:21 AM]

mailto:feedback@janeg.ca

toURL()

the absolute path is system dependent and may include relative indicators

For example, the following code creates a file
'test2.txt' in the directory directly above the
current directory:

File f1 = new File("..", "test2.txt")
f1.createNewFile();

System.out.println(f1.getAbsolutePath());

Output (on Win98):
D:\Java\jeg\io\..\test2.txt

●

the canonical path is the same as the absolute path BUT all relative indicators are resolved

For example,

System.out.println(f1.getCanonicalPath());

Output (on Win98):
// '..' in absolute path is resolved
D:\Java\jeg\test2.txt

●

toURL() will construct a valid URL identifier for the File

System.out.println(f.toURL());

Output:
file:/D:/Java/jeg/io/test1.txt

●

Note

the File class overrides the Object.equals() method.●

Two files are equal() if they have the same path, NOT if they refer to the same
underlying file system object.

●

File Status Methods

there are methods to check the status of a file

canRead() lastModified() isDirectory()
canWrite() setLastModified() isFile()
exists() setReadOnly() isHidden()
length() isAbsolute()

●

Modifiying Files and Directories

there are a number of methods for modifiying files and creating directories

delete() mkdir() listFiles()
deleteOnExit() mkdirs() listRoots()
renameTo()

●

list() and listFiles() can be used with FilenameFilters ie '*'●

listRoots() returns the system drives●

while renameTo() will change the name of the file on the system, the reference will return
the original path and name

// File object reference

●

Java Quick Reference - java.io Package - File Class

http://www.janeg.ca/scjp/io/file.html (2 of 3) [15/03/2004 8:47:21 AM]

File f = new File("test.txt");
f.createNewFile(); // creates the file

// new File reference
File f2 = new File("testRename.txt");
f.renameTo(f2); // renames the file

System.out.println(f.getAbsolutePath());

Output (on Win98):
D:\Java\jeg\io\test1.txt // original path for 'f'

And if you check to see which file actually
exists on the system:

System.out.println(f.exists());
System.out.println(f2.exists());

Output:
 false
 true

Note

There is no method which allows you to change directories!●

Security

many of the above methods will work correctly only if they are allowed by the security
permissions

●

for example, an Applet would probably not be allowed to create a new file●

Source Code for Examples
TestFileClass.java●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - File Class

http://www.janeg.ca/scjp/io/file.html (3 of 3) [15/03/2004 8:47:21 AM]

http://www.janeg.ca/scjp/io/TestFileClass.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Readers and Writers

InputStreamReader

InputStreamReader extends Reader and has one subclass, FileReader●

InputStreamReader reads bytes and translates them to Unicode characters using the
specified character encoding or the default system encoding

●

the class has two constructors

 InputStreamReader(InputStream in)
 InputStreamReader(InputStream in, String enc)

●

to use an InputStreamReader you must first create an instance of it for a byte input stream.
You can then read the stream using any of the Reader methods.

●

OutputStreamWriter

OutputStreamWriter extends Writer and has one subclass, FileWriter●

OutputStreamWriter translates between Unicode characters and bytes using the specified
character encoding or the default system encoding

●

the class also has two constructors

 OuputStreamWriter(OutputStream out)
 OuputStreamWriter(OutputStream out, String enc)

●

you use OutputStreamWriter by first creating an instance of it for a byte output stream; you
can then write to the stream using an Writer methods.

●

Character Encoding

Character encodings specify how 8-bit bytes are translated to 16-bit Unicode●

they are represented by Strings which follow the naming standards set by IANA Character
Registry

●

every implementation of Java is required to support the following sets:

 US-ASCII Seven-bit ASCII, a.k.a. ISO646-US, a.k.a. the
 Basic Latin block of the Unicode character
 set
 ISO-8859-1
 ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1
 UTF-8
 Eight-bit Unicode Transformation Format
 UTF-16BE
 Sixteen-bit Unicode Transformation Format,
 big-endian byte order
 UTF-16LE
 Sixteen-bit Unicode Transformation Format,
 little-endian byte order
 UTF-16
 Sixteen-bit Unicode Transformation Format,
 byte order specified by a mandatory initial
 byte-order mark (either order accepted on
 input, big-endian used on output)

●

specific platforms ie those used in Japan, China, Mid-East, etc, may include other encodings●

Java Quick Reference - java.io Package - Readers and Writers

http://www.janeg.ca/scjp/io/readwrite.html (1 of 2) [15/03/2004 8:47:22 AM]

mailto:feedback@janeg.ca

the streams are used to read and write data encoded in a character set which is different than
the default system encoding

●

For example (JPL pg238), to read bytes encoded under ISO 8859-6 for Arabic characters

public Reader readArabic(String file) throws IOException {
 InputStream fileIn = new FileInputSgream(file);
 return new InputStreamReader(fileIn, "iso-8859-6");
}

●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Readers and Writers

http://www.janeg.ca/scjp/io/readwrite.html (2 of 2) [15/03/2004 8:47:22 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Filters
Filters sit between input and output streams, processing the bytes being transferred●

FilterInputStream extends InputStream and FilterOutputStream extends OutputStream●

this means a FilterInputStream, and any of it's subclasses, can take any InputStream as an
argument and a FilterOutputStream can take any OutputStream

●

this allows the chaining of filter streams ie a FilterInputStream can take another
FilterInputStream; the original source can be an object that is not a filter stream as long as it
isn't reading from another input stream

●

Output filters can also be chained, you can have as many filters as you like but the last in the
chain must be an OutpuStream

●

both methods simply override all their inherited methods, passing all their processing along
to the underlying Input or Output stream

●

FilterInputStream Subclasses
Subclass Constructors
BufferedInputStream BufferedInputStream(InputStream in)

BufferedInputStream(InputStream in, int size)
DataInputStream DataInputStream(InputStream in)
LineNumberInputStream LineNumberInputStream(InputStream in)
PushbackInputStream PushbackInputStream(InputStream in)

PushbackInputStream(InputStream in, int size)

FilterOutputStream Subclasses
Subclass Constructors
BufferedOutputStream BufferedOutputStream(OutputStream out)

BufferedOutputStream(OutputStream out, int
size)

DataOutputStream DataOutputStream(OutputStream out)
PrintStream PrintStream(OutputStream out)

PrintStream(OutputStream out, boolean
autoflush)

technically, you should use PrintWriter when doing character related I/O , PrintStream is
included for historical reasons. It should only be used with System.in as it assumes Latin-1
character encoding.

●

most Reader and Writer classes can also act as filters as most of them already have
constructors which take another character stream

●

to create your own filter streams

Create subclasses of FilterInputStream and FilterOutputStream1.

Override the read() and write() methods2.

Override any other methods you might need3.

Make sure the input and output streams work together4.

●

Summary
If its an input filter, it can take any InputStream object.●

If an output filter, it can take any OutputStream object.●

FilterWriter classes take a Writer object.●

FilterReader classes take a Reader object.●

Java Quick Reference - java.io Package - Filters

http://www.janeg.ca/scjp/io/filters.html (1 of 2) [15/03/2004 8:47:22 AM]

mailto:feedback@janeg.ca

Source code for Examples
TestFilterWriter.java●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Filters

http://www.janeg.ca/scjp/io/filters.html (2 of 2) [15/03/2004 8:47:22 AM]

http://www.janeg.ca/scjp/io/TestFilterWriter.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Data Input and Output
DataInputStream and DataOutputStream, like all filters, must be attached to some other
stream

●

DataInputStream implements DataInput and has one ctor

DataInputStream(InputStream in)

●

DataOutputStream implements DataOutput has one ctor

DataOutputStream(OutputStream out)

and one field written which contains the number of bytes written.
Note: if this overflows it is set to Integer.MAX_VALUE.

●

DataInputStream has specialized read() methods, and DataOutputStream, specialized write()
methods to handle the various primitive types and UTF-8 characters

●

DataInputStream Methods DataOutputStream Methods

 write(int oneByte)

read(byte[] buf)
read(byte[] buf, int offset, int count)

write(byte[] buf)
write(byte[] buf, int offset, int count)

readBoolean() writeBoolean(boolean b)

readByte() writeByte(int val)

 writeBytes(String str)

readChar() writeChar(int val)

 writeChars(String str)

readDouble() writeDouble(double val)

readFloat() writeFloat(float val)

readFully(byte[] buf)
readFully(byte[] buf, int offset, int
count)

readInt() writeInt(int val)

readLine()

readLong() writeLong(long val)

readShort() writeShort(int val)

readUnsignedByte()

readUnsignedShort()

readUTF() writeUTF(String str)

skipBytes()

Items in red are deprecated.
All the methods throw IOException

Source Code for Examples
DataIOTest.java●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Java Quick Reference - java.io Package - Data Input and Output

http://www.janeg.ca/scjp/io/data.html (1 of 2) [15/03/2004 8:47:23 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/io/DataIOTest.java

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Data Input and Output

http://www.janeg.ca/scjp/io/data.html (2 of 2) [15/03/2004 8:47:23 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Reading and Writing
Files

FileStreams have three types of constructors

a constructor that takes a filename as a String1.

a constructor that takes a File object2.

a constructor that takes a FileDescriptor object3.

●

when constructors (1) or (2) are used, a new FileDescriptor object is created. This can be
accessed by calling getFD()

●

a FileDescriptor object represents a system-dependent value that describes an open file●

FileOutputStream has one additonal constructor

 FileOutputStream(String name, boolean append)

●

if the file exists, you can set append to true to force the write to occur at the end of the file;
otherwise, the existing file is overwritten

●

FileOutputStream (and FileWriter) have a flush() method that forces the underlying buffer to
be flushed.

●

Note

flush() does NOT guarantee that the contents will be written to disk. To
guarantee the data is written to disk use the FileDescriptor method sync()

●

FileReader and FileWriter read and write 16-bit Unicode characters●

FileInputStream and FileOutputStream read and write bytes●

Random Access Files (JPL pg 258)
the RandomAccessFile class is NOT a subclass of InputStream, OutputStream, Reader or
Writer; instead it incorporates all their functionaly plus additional methods by implementing
the DataInput and DataOutput interfaces.

●

Note

You cannot use a RandomAccessFile object where any of the other input and
output streams are required.

●

the class has two constructors

 public RandomAccessFile(String name, String mode)
 public RandomAccessFile(File file, String mode)

●

the mode argument must be either "r" or "rw" to indicate if the file is to be opened for
reading only or reading and writing

●

if the file is opened for writing and it does not exist; it will be created●

as with the other File streams, a FileDescriptor object is created when the file is opened●

the class allows you to set a read/write pointer to any position in the file●

key methods are:

 public long getFilePointer() throws IOException
 public void seek(long pos) throws IOException
 public void skipBytes(int count) throws IOException
 public long length() throws IOException

●

Java Quick Reference - java.io Package - Reading and Writing Files

http://www.janeg.ca/scjp/io/rwfiles.html (1 of 2) [15/03/2004 8:47:24 AM]

mailto:feedback@janeg.ca

Source code examples
Read a file using FileInputStream●

Write to a file using FileWriter●

Copy a file (jung.txt) to another file using FileReader and FileWriter●

An example, CopyBytes, to do the same thing using FileInputStream and FileOutputStream●

Test using a RandomAccessFile●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Reading and Writing Files

http://www.janeg.ca/scjp/io/rwfiles.html (2 of 2) [15/03/2004 8:47:24 AM]

http://www.janeg.ca/scjp/io/CountBytes.java
http://www.janeg.ca/scjp/io/WriteToAFile.java
http://www.janeg.ca/scjp/io/Copy.java
http://www.janeg.ca/scjp/io/CopyBytes.java
http://www.janeg.ca/scjp/io/TestRAF.java

The bigger the crowd the more negligible the individual becomes. But if
the individual, overwhelmed by the sense of his own puniness and impotence,
should feel that his life has lost its meaning--which, after all, is not
identical with the public welfare and higher standards of living--then he
is already on the road to State slavery and, without knowing or wanting it,
has become its proselyte.

The man who looks only outside and quails before the big battalions has no
resource with which to combat the evidence of his senses and his reason.
But that is just what is happening today: we are all fascinated and
overawed by statistical truths and large numbers and are daily apprised of
the nullity and futility of the individual personality, since it is not
represented and personified by any mass organization.

C.G. Jung, The Undiscovered Self, New American Library, 1958

http://www.janeg.ca/scjp/io/jung.txt

http://www.janeg.ca/scjp/io/jung.txt [15/03/2004 8:47:25 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.io Package - Serialization

Serialization (JCL1)

serialization is the process of converting an object to a stream of bytes in such a manner that
the original object can be rebuilt (lets you write an object to a file or other data container)

●

an object can be serialized only if it's class implements the Serializable or Externalizable
interface; it's superclass must have a no-arg default constructor or be Serializable itself

●

a classes serializable fields are all of its nontransient and nonstatic fields; this applies to all
public, protected, package and private fields (JCL1)

●

Note

Only the accessible fields of the superclasses are serialized

the serialized fields are written out using ObjectOutputStream.defaultWriteObject() and
read back using ObjectOutputStream.defaultReadObject()

●

all the objects referred to directly or indirectly are also serialized●

if a field contains an object that is not serializable, a NotSerializableException is thrown●

deserialization is the process of restoring a serialized object to a copy of the original object●

all Java primitive types, arrays, Strings and objects can be serialized/deserialized●

primitive types can be serialized using DataInputStream Interface and deserialized using
DataOutputStream Interface

●

Pkg Overview Data Streams
Character
Streams

Byte Streams File Class
Readers &

Writers

Filter Streams
Data

Input/Output
Reading &

Writing Files
Serialization

Java Quick Reference - java.io Package - Serialization

http://www.janeg.ca/scjp/io/serialize.html [15/03/2004 8:47:26 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.util Package - The Collections
Framework

a collection is a container or object that groups multiple objects into a single unit●

a Collections Framework provides a unified system for organizing and handling collections
and is based on four elements:

Interfaces that characterize common collection types1.

Abstract Classes which can be used as a starting point for custom collections and
which are extended by the JDK implementation classes

2.

Classes which provide implementations of the Interfaces3.

Algorithms that provide behaviours commonly required when using collections ie
search, sort, iterate, etc.

4.

●

the Collection Framework in Java has six core collection Interfaces:●

the Collection Framework also provides an interface for traversing collections: Interator and
it's subinterface ListIterator

●

the Iterator interface should be used in preference to the earlier Enumeration interface●

Collections
Framework

Collection
Abstract
Classes

Iterator List

Java Quick Reference - The Collections Framework

http://www.janeg.ca/scjp/util/framework.html [15/03/2004 8:47:27 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.util Package - The Collection
Interface

this is the root interface for the collection heirarchy●

it is not directly implemented by an SDK class; instead they implement the subinterfaces List
or Set

●

it is typically used to manipulate and pass collections around in a generic manner●

classes which implement Collection or one of it's subinterfaces must provide two
constructors

a default, no-argument constructor, which creates an empty collection, and1.

a constructor which takes a Collection as an argument and creates a new collection
with the same elements as the specified collection

2.

●

Query Methods

contains(Object o) returns true if the collection contains the specified element

isEmpty() returns true if the collection has no elements

iterator() returns an Iterator object.
There is no guarantee as to the order of the returned
elements unless the collection is an instance of a class that
guarantees the order.

size() returns the number of elements in the collection or
Integer.MAX_VALUE if the collection equals or exceeds
Integer.MAX_VALUE

toArray() returns the collection elements as an array.
If the collection class guarantees an order, the array
elements are in the guaranteed order.

toArray(Object a[]) returns all the elements in the collection whose type is that
of the array type.

If the collection does not fit in the array, a new array of the
same type is returned.

If the array is larger than the collection, the array element
after the last collection element is set to null

Bulk Methods

containsAll(Collection c) returns true if the collection contains the all the elements in
the specified collection

addAll(Collection c) adds all the elements in the specified collection to this
collection

clear() removes all the elements in the collection

removeAll(Collection c) removes all the this collections elements that are in the
specified collection.

retainAll(Collection c) retains all the elements in this collection that are contained
in the specified collection

Modification Methods

Java Quick Reference - The Collection Interface

http://www.janeg.ca/scjp/util/collection.html (1 of 2) [15/03/2004 8:47:28 AM]

mailto:feedback@janeg.ca

add(Object o) adds an element to the collection.
Returns false if the element is not added as the collection
class guarantees no duplicates.

remove(Object o) removes the specified object from the collection, if it exists.

equals() and hasCode()

equals(Object o) programmers may override the Object.equals() method to
implement collection specific comparisons eg "value"
comparison vs "reference" comparison

hashCode() programmers overriding equals() must also override
Object.hashCode()

Tips
any SDK class which implements Collection or any of it's subinterfaces will contain the two
required constructors CollectionName() and CollectionName(Collection c)

●

Collections
Framework

Collection
Abstract
Classes

Iterator List

Java Quick Reference - The Collection Interface

http://www.janeg.ca/scjp/util/collection.html (2 of 2) [15/03/2004 8:47:28 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.util Package - The List Interface
provide skeletal implementations that can be used as the basis for building custom collection
classes

●

available classes are:

AbstractCollection1.

AbstractList2.

AbstractMap3.

AbstractSequential4.

AbstractSet5.

●

JSK implementations extend the applicable Abstract class and implement the appropriate
Interface

●

Collections
Framework

Collection
Abstract
Classes

Iterator List

Java Quick Reference - Collections Abstract Classes

http://www.janeg.ca/scjp/util/abstract.html [15/03/2004 8:47:28 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.util Package - The Iterator Interface
used to sequentially access collection elements●

element order depends on the collection ie List elements are presented as they appear in the
List, Set elements can be in any order

●

Iterator Methods

hasNext() returns true if the iteration has more elements

next() returns the next element in the iteration

remove() removes the most recently retrieved element from the underlying collection

has one subinterface, ListIterator, which allows a programmer to traverse a List in either
direction and make modifications to the underlying List

●

java.util.ListIterator Methods

Query Methods

hasNext() returns true if there are more elements in a forward direction

hasPrevious() returns true if there are more elements in a backward direction

next() returns the next element in the List

nextIndex() returns the index of the next element in the list, or, the size of the list
if there are no more elements

previous() returns the previous element in the List

previousIndex() returns the index of the previous element in the list. If positioned at
the first element, returns -1

Modification Methods

add(Object obj) inserts the new object immeadiately before the element which would
be returned by next().

remove() removes the last element in the List retrieved by a next() or
previous() operation.

Can only be made once after a next() or previous() operation and
cannot be made if there has been an intervening add().

set(Object obj) replaces the last element in the List retrieved by a next() or previous()
operation; there can be no intervening call to add() or remove().

Collections
Framework

Collection
Abstract
Classes

Iterator List

Java Quick Reference - The Iterator Interface

http://www.janeg.ca/scjp/util/iterator.html [15/03/2004 8:47:28 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.util Package - The List Interface
a List is a collection whose elements can be accessed by an index●

the indices are zero-based●

a list has methods for inserting and removing elements●

a list can contain duplicate elements●

a List provides a special ListIterator which allows you to move backwards and forwards
through the elements

●

there are three basic ways in which a List can be modified:

add an element1.

remove an element2.

replace an element3.

●

a list can support any or none of the above; attempts to modify a list that does not support the
above will result in an UnsupportedOperationException

●

there is no way to append Lists unless you provide your own method●

java.util Implementations of List

ArrayList extends AbstractList implements List, Cloneable, Serializable

Elements are ordered.

Internally uses an array to store elements.

Index access is quick, while adding and removing elements, except at the
end of the array, is expensive.

LinkedList extends AbstractSequentialList implements List, Cloneable, Serializable

Elements are ordered.

Internally uses a doubly linked list to store elements.

Adding and removing elements involves updating two links; index access
is slow as the entire list must be traversed. LinkedList retains a reference
to both the first and last elements; retrieving the first or last element is
efficient.

Vector extends AbstractList implements List, Cloneable, Serializable

Older class that was modified in JDK 1.2 to implement List.

An expansible array.

The vector will grow automatically to take new objects. You can also
shrink a Vector. Otherwise, manipulated the same as an array.

May contain null elements.

All methods are synchronized

List Methods

Java Quick Reference - The List Interface

http://www.janeg.ca/scjp/util/list.html (1 of 2) [15/03/2004 8:47:29 AM]

mailto:feedback@janeg.ca

Positional Methods

get(int index) returns the element at the specified position

set(int index, Object element) replaces the element at the specified position with
the given object

add(int index, Object element) inserts the specified element at the specified
position, shifting all the elements and adds one to
their index values

remove(int index) removes the element at the specified position,
shifiting all the elements and subtracting one from
their indices

Search Methods

indexOf(Object o) returns the index of the first occurence of the
specified element or -1 if it is not found

lastIndexOf(Object o) returns the index of the last occurence of the
specified element or -1 if it is not found

List Iterator

listIterator() returns a list iterator of the elements in their proper
sequence

listIterator(int index) returns a list iterator of elements starting at the
specified index

subList(int fromIndex, int toIndex) returns the portion of the list between the specified
indices exclusive of the toIndex element

Collections
Framework

Collection
Abstract
Classes

Iterator List

Java Quick Reference - The List Interface

http://www.janeg.ca/scjp/util/list.html (2 of 2) [15/03/2004 8:47:29 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification - Main
Classes

the java.lang Package contains classes that are fundamental to the Java programming
language

●

it is always implicitly imported●

the most important classes are Object and Class●

Object

the Object class is at the root of the class heirarchy, all other classes inherit it's methods

protected Object clone() throws CloneNotSupportedException

returns an identical copy of an object. The object must implement the Cloneable
interface

public boolean equals(Object obj)

returns true if obj is the same object as the referenced object

protected void finalize() throws Throwable

called by the garbage collector prior to collecting the object

public final Class getClass()

returns the runtime class of an object

public int hashCode()

returns a distinct integer representing a unique object; supports hash tables

public final void notify()

wakes up a single thread waiting on the object's monitor

public final void notifyAll()

wakes up all threads waiting on the object's monitor

public String toString()

returns a string representation of the object

public final void wait() throws InterruptedException,
public final void wait(long timeout) throws InterruptedException,
public fianl void wait(long timeout, int nanos) throws InterruptedException

causes the current thread to wait until another thread invokes notify() or notifyAll() for
this object, or, the specified time elaspses

●

Class

the Class class was introduced in JDK 1.2●

instances of the Class class represent classes and interfaces in a running Java application●

also represents arrays, primitive types and void, all of which are Class instances at runtime●

objects of the Class class are automatically created as classes are loaded by the JVM; they
are known as class descriptors

●

provides over 30 methods which can be used to obtain information on a running class●

some of the more useful methods are: getName(), toString(), getSuperclass(), isInterface(),
newInstance()

●

Java Quick Reference - java.lang Package - Main Classes

http://www.janeg.ca/scjp/pkglang/classes.html (1 of 2) [15/03/2004 8:47:30 AM]

mailto:feedback@janeg.ca

Other classes

Wrapper classes used to represent primitive types as Objects: Boolean, Byte, Short,
Character, Integer, Float, Long and Double

●

Math class provides commonly used mathematical functions ie cos, sine, tan●

String and StringBuffer classes provide commonly used operations on character strings●

System operation classes: ClassLoader, SecurityManager, Runtime, Process and System
which manage the dynamic loading of classes, creation of external processes, security, and
host inquiries ie time of day

●

Package class is new to JDK 1.2. Provides methods for obtaining package version
information stored in the manifest of jar files. Useful methods include: getPackage(),
getAllPackages(), which provide package objects that are known to the class loader, and
isCompatibleWith() which is used to determine wether a package is comparable to a
particular version.

●

all the Exception and Error classes, including Throwable●

Interfaces

Cloneable. Contains no methods. Used to differentiate between objects that are cloneable and
non-cloneable.

●

Comparable, new in JDK 1.2. Defines the compareTo() method. Objects implementing this
interface can be compared and sorted.

●

Runnable. Defines the run() method which is invoked when a thread is activated.●

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference - java.lang Package - Main Classes

http://www.janeg.ca/scjp/pkglang/classes.html (2 of 2) [15/03/2004 8:47:30 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification - Wrapper
Classes

one for each primitive type: Boolean, Byte, Character, Double, Float, Integer, Long, and
Short

●

Byte, Double, Float, Integer and Short extend the abstract Number class●

all are public final ie cannot be extended●

get around limitations of primitive types●

allow objects to be created from primitive types●

all the classes have two constructor forms

a constructor that takes the primitive type and creates an object eg Character(char),
Integer(int)

❍

a constructor that converts a String into an object eg Integer("1"). Throws a
NumberFormatException if the String cannot be converted to a number

❍

●

Note

The Character class does not have a constructor that takes a String argument●

all, except Character, have a valueOf(String s) method which is equivalent to new
Type(String s)

●

all have a typeValue() method which returns the value of the object as it's primitive type.
These are all abstract methods defined in Number and overridden in each class

public byte byteValue()❍

public short shortValue()❍

public int intValue()❍

public long longValue()❍

public float floatValue()❍

public double doubleValue()❍

●

all the classes override equals(), hashCode() and toString() in Object

equals() returns true if the values of the compared objects are the same❍

hashCode() returns the same hashcode for objects of the same type having the same
value

❍

toString() returns the string representation of the objects value❍

●

all have a public static final TYPE field which is the Class object for that primitive type●

all have two static fields MIN_VALUE and MAX_VALUE for the minimum and maximum
values that can be held by the type

●

Void

there is also a wrapper class for Void which cannot be instantiated.●

Note

The constructors and methods described above do NOT exist for the Void class
although it does have the TYPE field.

●

Character

contains two methods for returning the numeric value of a character in the various number
systems

●

Java Quick Reference - java.lang Package - Wrapper Classes

http://www.janeg.ca/scjp/pkglang/wrapper.html (1 of 2) [15/03/2004 8:47:30 AM]

mailto:feedback@janeg.ca

public static int digit(char ch, int radix)❍

public static int getNumber(char ch)❍

and one method to return the character value of a number

public static char forDigit(int digit, int radix)❍

●

has two case conversion methods

public static char toLowerCase(char ch)❍

public static char toUpperCase(char ch)❍

●

also contains a variety of other methods to test wether a character is of a specific type eg
isLetter(), isDefined(), isSpaceChar(), etc

●

getType() returns an int that defines a character's Unicode type●

Integer, Short, Byte and Long

all have parseType methods eg parseInt(), parseShort, etc that take a String and parse it into
the appropriate type

●

the Integer and Long classes also have the static methods toBinaryString(), toOctalString()
and toHexString() which take an integer value and convert it to the appropriate String
representation

●

Float and Double

both classes have static fields which define POSITIVE_INFINITY, NEGATIVE_INFINITY,
and NaN

●

and the following methods to test a value

public boolean isNan()❍

public static boolean isNaN(type value)❍

public boolean isInfinite()❍

public static boolean isInfinite(type value)❍

●

Float also has a constructor that takes a double value●

both classes have methods to convert a value into a bit pattern or vice versa

public static int floatToIntBits(float value)❍

public static float intBitsToFloat(int bits)❍

public static long doubleToLongBits(double value)❍

public static double longBitsToDouble(long bits)❍

●

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference - java.lang Package - Wrapper Classes

http://www.janeg.ca/scjp/pkglang/wrapper.html (2 of 2) [15/03/2004 8:47:30 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification - Math
Class

contains static constants E and PI●

E: 2.718281828459045
PI: 3.141592653589793

contains methods for common mathematical operations ie abs, sin, exp, round, etc.●

all methods are static●

the Math class cannot be instantiated●

methods involving angles use radians vs degrees and minutes●

all methods, except round(), return a double●

all methods take at least one double as an argument, except random which takes no
arguments

●

the following methods are overloaded to return and handle int, long and float

static type abs(type a)❍

static type max(type a, type b)❍

static type min(type a, type b)❍

●

IEEEremainder

calculates the remainder as defined by IEEE-754●

the remainder operator, %, makes values symmetric around zero ie negative and positive
values return corresponding remainders

●

 7 % 2.5: 2.0
-7 % 2.5: -2.0

Math.IEEEremainder keeps resulting values y units apart●

Math.IEEEremainder(7, 2.5): -0.5
Math.IEEEremainder(-7, 2.5): 0.5

abs()

returns the absolute or positive value of the argument●

Math.abs(1234.59): 1234.59
Math.abs(-0.0): 0.0
Math.abs(Float.NEGATIVE_INFINITY): Infinity
Math.abs(Float.NaN): NaN

● EXCEPT if the value is equal to Integer.MIN_VALUE, in which case, it returns the value as a
negative

Math.abs(Integer.MIN_VALUE): -2147483648

ceil()

returns the smallest double value not less than the argument and equal to an integer (counts
up)

●

Java Quick Reference - java.lang Package - Math Class

http://www.janeg.ca/scjp/pkglang/math.html (1 of 4) [15/03/2004 8:47:30 AM]

mailto:feedback@janeg.ca

if the argument is already an integer, returns the argument●

if the argument is NaN or infinity, returns the argument●

if the argument is between -1.0 and 0, returns 0●

Math.ceil(9.01): 10.0 // counts up (away from zero)
Math.ceil(-9.01): -9.0 // counts up (towards zero)
Math.ceil(10): 10.0
Math.ceil(-0.03): -0.0
Math.ceil(Double.NaN): NaN

floor()

returns the largest double value not greater than the argument and equal to an integer (counts
down)

●

if the argument is an integer, returns the argument●

if the argument is NaN, infinity, negative or positive zero, returns the argument●

if the argument is between -0 and 0, returns -0●

Math.floor(9.01): 9.0 // counts down (towards zero)
Math.floor(-9.01): -10.0 // counts down (away from zero)
Math.floor(10): 10.0
Math.floor(-0.03): -1.0
Math.floor(Double.NaN): NaN

min() and max()

min() returns the smallest of two values●

max() returns the largest of two values●

Math.min(-1.5, 1.5): -1.5
Math.max(-1.5, 1.5): 1.5
Math.min(0.0, -0.0): -0.0 // zeros are not equivalent
Math.min(Float.NaN,
 Float.POSITIVE_INFINITY)); NaN

random()

returns a pseudo-random positive double number between 0.0 and 1.0●

if you want to seed the number or generate random numbers in different ranges use the
java.util.Random class

●

Math.random(): 0.2379468138972043

round()

has two versions

public static long round(double a)❍

public static int round(float a)❍

●

only method that does not return a double●

adds 0.5 to the argument and returns the closest int●

if the argument is not a number, returns zero●

if the argument is a negative infinity or less than the MIN_VALUE for the type, returns the
MIN_VALUE

●

if the argument is a positive infinity or greater than the MAX_VALUE for the type, returns
the MAX_VALUE

●

Java Quick Reference - java.lang Package - Math Class

http://www.janeg.ca/scjp/pkglang/math.html (2 of 4) [15/03/2004 8:47:30 AM]

Math.round(1.5): 2
Math.round(-1.5): -1
Math.round(Float.NaN): 0
Math.round(Float.NEGATIVE_INFINITY): -2147483648
Math.round(Double.POSITIVE_INFINITY): 9223372036854775807
Math.round(Float.MAX_VALUE): 2147483647
 (Float.MAX_VALUE is 3.4028235E38)

Note

If the value is Float.MAX_VALUE the round method returns
Integer.MAX_VALUE

●

rint()

rounds to the closest integer●

if integers are equidistant, favours the even integer●

Math.rint(5.5): 6.0
Math.rint(-5.5): -6.0
Math.rint(5.49): 5.0
Math.rint(-5.49): -5.0

sqrt()

returns the positive square root of a number●

returns NaN if argument is negative●

Math.sqrt(45): 6.708203932499369
Math.sqrt(-45): NaN

pow(double a, double b)

returns the first argument raised to the power of the second argument●

Math.pow(2,2): 4.0

Trigometric functions

all results are returned in radians●

there are 2 * PI degrees in a circle, ie 2/PI = 90 degrees●

sin(double a)

if the result is NaN or infinity, returns NaN
if the result is negative zero, returns -0.0

cos(double a)

if the result is NaN or infinity, returns NaN

tan(double a)

if the result is NaN or infinity, returns NaN
if the result is negative zero, returns -0.0

asin(double a)

returns a value between -PI/2 and PI/2
if the result is NaN or absolute value is greater than 1, returns NaN
if the result is negative zero, returns -0.0

acos(double a)

returns a value between 0.0 and PI
if the result is NaN or absolute value is greater than 1, returns NaN

Java Quick Reference - java.lang Package - Math Class

http://www.janeg.ca/scjp/pkglang/math.html (3 of 4) [15/03/2004 8:47:30 AM]

atan(double a)

returns a value between -PI/2 and PI/2
if the result is NaN, returns NaN
if the result is negative zero, returns -0.0

atan2(double a, double b) converts rectangular co-ordinates to polar co-ordinates●

has two additional methods, new in JDK 1.2, to convert between radians and degrees

double toRadians(double angdeg)❍

double toDegrees(double angdeg)❍

●

Math.sin(90): 0.8939966636005579
Math.cos(90): -0.4480736161291701
Math.tan(90): -1.995200412208242
Math.asin(-0): 0.0
Math.acos(-0): 1.5707963267948966
Math.atan(90): 1.5596856728972892

Math.toRadians(90) 1.5707963267948966
Math.toDegrees(Math.PI/2): 90.0

Logarithms

two functions to handle logs

double log(double a)❍

double exp(double a)❍

●

log() returns the natural logarithm of the argument●

if the argument is less than zero, returns NaN●

if the argument is positive infinity, returns positive infinity●

if the argument is -0.0 or 0.0, returns negative infinity●

Math.log(10): 2.302585092994046
Math.log(-10): NaN
Math.log(0.0): -Infinity

exp() returns e to the power of the argument●

if the argument is NaN, returns NaN●

if the argument is positive infinity, returns positive infinity●

if the argument is negative infinity, returns positive zero●

Math.exp(5): 148.4131591025766
Math.exp(Float.NaN): NaN
Math.exp(Float.POSITIVE_INFINITY): Infinity
Math.exp(Float.NEGATIVE_INFINITY): 0.0

Example Code
TestMath.java●

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference - java.lang Package - Math Class

http://www.janeg.ca/scjp/pkglang/math.html (4 of 4) [15/03/2004 8:47:30 AM]

http://www.janeg.ca/scjp/pkglang/TestMath.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification - String
Immutability

String objects are read-only or immutable ie the contents of a String object never change●

String str = "Hello";
str = "Goodbye";

in the above example, the second assignment of "Goodbye" to String, what actually happens
is that a new string "Goodbye" is created and the object reference of the new string is stored
in the variable str

●

operations that seem to modify a String object actually create new read-only String objects;
leaving the original object unchanged

●

the StringBuffer class provides mutable or flexible string handling●

Also see

String literals

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference - java.lang Package - String Immutability

http://www.janeg.ca/scjp/pkglang/immutable.html [15/03/2004 8:47:31 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - String Literals
String literals are enclosed in double quotes

"This is a string literal."

●

A string constant expression occurs when two or more string literals are concatenated

"This is " + "a string " + "constant expression."

●

Character escape codes can be used in String literals

"A line with a carriage return \r"

●

!!! Warning !!!

You cannot use the character literals \u000a (newline) or \u000d (carriage return) in
String literals as they will be interpreted as LineTerminators, not as input characters
(JLS §3.10.5)

"A line with unicode carriage return character \u000d"

If you use octal values in Strings to represent characters be sure to use a zero prefix (JPL
pg33)
Note: the zero prefix is not required for octal values in char literals

"\0116" octal value equivalent to escape
 char \t followed by 6 "\t6"
"\116" interpreted as letter N

●

Each String literal is a reference to an object of class String.

String literals or strings that are the values of constant expressions, are interned so as
to share unique instances.

public String.intern() (JSK 1.3)

"Returns a canonical representation for the string object.

A pool of strings, initially empty, is maintained privately by the class String.
When the intern method is invoked, if the pool already contains a string equal to this String object
as determined by the equals(Object) method, then the string from the pool is returned. Otherwise,
this String object is added to the pool and a reference to this String object is returned.

It follows that for any two strings s and t, s.intern() == t.intern() is true if and only if s.equals(t) is
true.

All literal strings and string-valued constant expressions are interned."

Output from (JLS § 3.10.5) example code:

the JLS gives example code using literals in the following classes:

class test❍

class Other (in the same java file as class test)❍

class other.Other (in a different package)❍

●

Java Quick Reference - Language Fundamentals - String Literals

http://www.janeg.ca/scjp/lang/strLiteral.html (1 of 3) [15/03/2004 8:47:32 AM]

mailto:feedback@janeg.ca

the code gives the following output:●

String variables initialized as:
 String hello = "Hello"
 String lo = "lo"

 (1) hello == "Hello" true
 (2) Other.hello == hello true
 (3) other.Other.hello == hello true
 (4) hello == ("Hel"+"lo") true
 (5) hello == ("Hel"+lo).intern() true
 (6) hello == ("Hel" + lo) false

literal strings will represent the same reference if they are created

in the same class and in the same package1.

in different classes within the same package2.

in different classes in different packages3.

using constant expressions computed at compile time4.

by explicitly using the intern() method and the resulting string is already in the string
pool

5.

●

literal strings will represent different references if they are newly created at runtime (Line
6)

●

Summary

if String objects having the same data are created using a constant expression, a
string literal, a reference to an existing string, or by explicitly using the intern()
method, their references will be the same

●

if String objects having the same data are created explicitly with the new
operator or their values are computed at runtime, their references will be
different

●

 String str1 = "Lions and Tigers and Bears!";
 String str2 = "Lions and Tigers and Bears!";
 String str3 = str2;
 String str4 = new String("Lions and Tigers and Bears!");
 String str5 = " Oh my!";
 String str6 = "Lions and Tigers and Bears! Oh my!";
 String str7 = str1 + str5;
 String str8 = (str1 +" Oh my!").intern();

Comparison output:
str1 == str2 -> true // the str2 literal existed ("interned")
str1 == str3 -> true // hold the same reference
str1 == str4 -> false // str4 explicitly created
str2 == str3 -> true // hold the same reference
str2 == str4 -> false // str4 explicitly created
str3 == str4 -> false // str4 explicitly created
str6 == str7 -> false // str7 computed at runtime
str6 == str8 -> true // explicit use of intern() at runtime

JSK 1.3 for the java.lang.String class states:

"Strings are constant; their values cannot be changed after they are created. String buffers support
mutable strings. Because String objects are immutable they can be shared."

In other words, because the compiler knows the strings original value cannot be changed once it's
created it can safely use existing data and avoid cluttering up memory with duplicates.

Java Quick Reference - Language Fundamentals - String Literals

http://www.janeg.ca/scjp/lang/strLiteral.html (2 of 3) [15/03/2004 8:47:32 AM]

Example code
TestStringLiteral.java●

Traps
using == operator to compare contents of two string reference variables pointing to different
String objects

●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - String Literals

http://www.janeg.ca/scjp/lang/strLiteral.html (3 of 3) [15/03/2004 8:47:32 AM]

http://www.janeg.ca/scjp/lang/TestStringLiteral.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Source Files
A Java source code file or compilation unit has three basic parts, each of which is optional (JLS
§7.3):

A package declaration●

import declarations●

top-level class and interface declarations●

Package declaration

if used, it must be the first non-comment statement in the source code file●

you can not declare more than one●

syntax: package packageName;●

Import declarations

if used, must be the first non-comment statement directly following the package declaration.●

you can use as many import statements as you want●

if no package statement appears in the source code file, the import statement must be the first
non-comment statement in the file

●

top-level class and interface declarations

A top-level class or interface is defined as any class or interface whose declaration is not
contained within the body of any other class or interface declaration. (JLS §8 and §9).

●

you can declare multiple classes and interfaces within a file with the following caveats:

The Sun SDK allows one and only one public class or interface within a source code
file.

❍

The filename must exactly match the name of the public class or interface declared in
the file and have the .java extension

❍

●

Non-public classes may have main() methods. If they have no access modifier
(package access) they may still be run from the command-line using the classname.

Example Code
TestPkgImport.java●

Tips
an empty source file will compile without error●

if a .java file does not contain a public class or interface it can have any name●

Traps
code with package or import declarations given in wrong order●

more than one package declaration●

file with more than one public class or interface declaration●

Java Quick Reference - Language Fundamentals - Source Files

http://www.janeg.ca/scjp/lang/source.html (1 of 2) [15/03/2004 8:47:32 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/lang/TestPkgImport.java

filename.java does not match public class name as declared within the file●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Source Files

http://www.janeg.ca/scjp/lang/source.html (2 of 2) [15/03/2004 8:47:32 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Package Declarations

Syntax

 package packageName;

packages provide a naming context and an organizational structure for Java compilation
units

●

package names are hierarchical with component names separated by dots (JPL pg 25)●

the standard convention for package naming is to use the reversed internet domain name of
whoever's creating the package. For example:

●

 com.sun.java.awt // Sun packages
 com.ibm.utils // IBM packages
 com.acme.tools // Acme company packages

the package naming structure directly maps to a directory structure. For example, if you were
developing the Acme company packages your compilation units for the com.acme.tools
package would be in:

●

 directory.............. com
 subdirectory...........acme
 subdirectory..........tools

the Java compiler uses a combination of the CLASSPATH and package name to locate the
source file

●

host systems may store packages in databases (JLS §7.2.2)●

if used, it must be the first statement in the source code file●

you can not declare more than one●

the package naming structure is for ease of organization only, it does not confer a special
relationship (JLS §7.1) ie

●

 There is no special relationship between the packages:

 com.acme.tools, and
 com.acme.utils

 The fact that they share a common subpackage, acme,
 has no meaning in terms of a types scope.

Unnamed packages (JLS §7.4.2)

if no package declaration is found, the class or interface is made part of an unnamed
package

●

every implementation of Java must provide for at least one unnamed package●

most systems allow for one unnamed package per directory●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Package Declarations

http://www.janeg.ca/scjp/lang/pkg.html [15/03/2004 8:47:33 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Import Declarations

Syntax

 import packageName.*; // type-import-on-demand
 import packageName.ClassName; // single-type-import
 import packageName.InterfaceName; // single-type-import

the import statement is used to reference classes and interfaces declared in other packages●

the type-import-on-demand import statement will cause the package to be searched when a
type is declared for a class which has not been declared within the source file

●

duplicate type-import-on-demand statements are ignored (JLS §7.5.2)●

the java.lang package is automatically imported in every compilation unit, it does not have
to be specifically imported

●

you can access classes and interfaces from other packages without first importing them but
you must use their fully qualified names For example:

●

 If you import the java.awt.Button class by using:
 import java.awt.*; ,or,
 import java.awt.Button;

 You can create a Button by coding:

 Button myButton = new Button();

 Without the package import you'd need to code:

 java.awt.Button myButton = new java.awt.Button();

imported types are available to all classes and interfaces within the same compilation unit
(JLS §7.5)

●

it is legal to import a single-type and a package having the same names (JLS §7.5.4)

i.e.
 import java.util.Vector;
 import Vector.pest; // no compile error

●

Also see

Sun Tech Tip: Using Import Declarations●

Tips
a single-type import will take precedence over an import-on-demand●

import-on-demand types do not increase the size of the compiled code ie only the types
actually used are added to the code

●

I've read that while import-on-demand adds no overhead to the compiled code, they can slow
down the speed of the compile; however, Peter van der Linden, in Just Java 2, 4th Edition
says it ain't so and my guess is he knows ... he's a kernel programmer for Sun

●

Java Quick Reference - Language Fundamentals - Import Declarations

http://www.janeg.ca/scjp/lang/import.html (1 of 2) [15/03/2004 8:47:34 AM]

mailto:feedback@janeg.ca
http://developer.java.sun.com/developer/TechTips/2000/tt0110.html#tip2

Traps
single-type imports for two classes in different packages but with the same simple name●

single-type import with the same simple name as a class defined in the source file●

attempting to import a package vs a type ie import java.util vs import java.util.*●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Import Declarations

http://www.janeg.ca/scjp/lang/import.html (2 of 2) [15/03/2004 8:47:34 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Class Declarations

Syntax (JJ pg 137)

 modifiers class ClassName extendsClause implementsClause {
 // Class body
 }

The modifiers, extendsClause and implementsClause are all optional.

Modifiers

 public protected private
 abstract static final strictfp

if two or more modifiers are used in a declaration it is customary, but not required, to show
them in the order given (JLS 8.1.1)

●

no modifiers are allowed in Anonymous class declarations (JJ pg 147)●

A class may not be both final and abstract as an abstract class implies extension●

package access (no access modifier declared) is also referred to as friendly access●

a compile error occurs if the same modifier appears more than once in a declaration (JLS
§8.1.1)

●

extendsClause (JJ pg 137)

consists of the extends keyword followed by the name of the class being extended●

the extended class is referred to as the parent or superclass●

multiple extends are illegal ie a class may have only one superclass●

if no extends clause is used, the class automatically inherits from the java.lang.Object class●

a compile error occurs if a final class appears in the extends clause (JLS §8.1.1.2)●

an Anonymous class cannot have an extends clause (JPL pg74)●

implementsClause (JJ pg 137)

identifies interfaces implemented by the class●

consists of the implements keyword followed by a comma seperated list of the names of the
interfaces to be implemented

 class X implements interfaceA, interfaceB, ... { }

●

a class must provide a method implementation (execution code) for every method declared in
or inherited by the interface

●

if an interface is not provided in the implements clause, the class does not implement the
interface even if it provides an implementation for every method declared in the interface

●

Class body (JJ pg 138)

the class body declares members (field variables and methods), constructors and initializers●

class members may also be inner classes or interfaces●

Java Quick Reference - Language Fundamentals - Class Declarations

http://www.janeg.ca/scjp/lang/class.html (1 of 2) [15/03/2004 8:47:34 AM]

mailto:feedback@janeg.ca

Traps
class attempting to extend more than one other class●

class declared both final and abstract●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Class Declarations

http://www.janeg.ca/scjp/lang/class.html (2 of 2) [15/03/2004 8:47:34 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Interface Declarations

Syntax (JJ pg142)

 modifiers interface InterfaceName extendsClause {
 // Interface body
 }

The modifiers and extendsClause are optional.

A compile time error occurs if an interface has a simple name the same as any of it's enclosing
classes or interfaces (JLS §9.1)

Modifiers (JLS §9.1.1)

 public protected private
 abstract static strictfp

Note

top-level interfaces may only be declared public●

 private interface A {} // compile error
 protected interface B{} // compile error

inner interfaces may be declared private and protected BUT only if they are defined in a
class

public interface A {
 private interface B {} // compile error
 protected interface C {} // compile error
}

public class A {
 private interface B {} // compiles OK
 protected interface C {} // compile OK

}

●

a compile error occurs if the same modifier appears more than once in an interface
declaration (JLS §9.1.1)

●

every interface is implicitly abstract; the modifier is obsolete and should not be used in new
programs (JLS §9.1.1.1)

●

extendsClause

consists of the extends keyword followed by a comma separated list of the interfaces being
extended.

●

Note

Java Quick Reference - Language Fundamentals - Interface Declarations

http://www.janeg.ca/scjp/lang/interface.html (1 of 2) [15/03/2004 8:47:34 AM]

mailto:feedback@janeg.ca

Classes are based on single-inheritance, they can only extend one class.●

Interfaces are allowed multiple-inheritance, they can extend more than one
interface.

●

 interface InterfaceA extends
 interfaceX, interfaceY, ... {}

Interface body

an interface body may contain constant declarations, abstract method declarations, inner
classes and inner interfaces

●

fields in an interface are implicitly static and final ie they MUST be constants (JLS§9.3)●

methods in an interface are implicitly abstract and public; they CANNOT be static
(JLS§9.4)

●

methods cannot be declared strictfp, native or synchronized (JLS§9.4)●

member classes declared in an interface are implicitly public and static (JLS§9.5)●

Also see

Sun Tutorial: Interfaces and packages●

Tech Tip: Abstract classes vs interfaces●

Code Examples
TestInterfaceModifiers.java●

TestInterfaceInClass.java●

Traps
an interface method declared as native or synchronized●

an interface method declared as static●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Interface Declarations

http://www.janeg.ca/scjp/lang/interface.html (2 of 2) [15/03/2004 8:47:34 AM]

http://java.sun.com/docs/books/tutorial/java/interpack/index.html
http://developer.java.sun.com/developer/JDCTechTips/2001/tt1106.html#tip2
http://www.janeg.ca/scjp/lang/TestInterfaceModifiers.java
http://www.janeg.ca/scjp/lang/TestInterfaceInClass.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Constructor
Declarations

Syntax (JLS §8.8)

 modifiers ClassName(arguments) throwsClause {
 // Constructor body
 }

The modifers, ClassName, arguments, and throwsClause are optional.

[Note: all are optional in the sense that your class does NOT have to declare a constructor (see
following on default constructors);however, if you do include a constructor modifiers, arguments
and the throws clause are optional.]

a constructor can use the access modifiers public, protected or private or have no access
modifier (package access)

●

a constructor can not use the modifiers abstract, static, final, native, synchronized or
strictfp (JLS §8.8.3)

●

constructors are not considered class members, they are not inherited●

if a class constructor is not declared, a default constructor is supplied by the compiler

 modifiers ClassName() {
 super();
 }

●

the default constructor has the same access modifier as the class itself, either: public,
protected, private or package (no modifier)

●

to prevent a class from being instantiated outside the class declaration you can create a
private constructor.

●

Note

A method having the same name as the class is not treated as a constructor

 public void MyClassName() {} // not a constructor
 public MyClassName() {} // constructor

A constructor cannot have a return type.

Also see

Sun Tech Tip: Default Constructors

Tips
a constructor body can include a return statement providing no value is returned●

Traps
subclass with default constructor when the superclass does not have a no-args constructor or
it's no-arg constructor has a throws clause

●

Java Quick Reference - Language Fundamentals - Constructor Declarations

http://www.janeg.ca/scjp/lang/constructor.html (1 of 2) [15/03/2004 8:47:36 AM]

mailto:feedback@janeg.ca
http://developer.java.sun.com/developer/TechTips/1998/tt0811.html#tip2

constructor declared with a return type●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Constructor Declarations

http://www.janeg.ca/scjp/lang/constructor.html (2 of 2) [15/03/2004 8:47:36 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Method Declarations

Syntax (JJ pg88)

 modifiers returnValue methodName(parameterList)
 throwsClause
 {
 // Method body
 }

The modifiers and throwsClause are optional.

Modifiers

legal access modifiers: public, protected, private or package (none declared)●

legal special modifiers: abstract, final, native, static, or synchronized●

a static method is referred to as a class method●

a non-static method is referred to as an instance method●

the access modifier of an overriding method must provide at least as much access as the
method being overridden. (JLS §8.4.6.3)

Original Method Access Overriding method must be
 public public
 protected public or protected
 package package, public or protected

●

returnValue (JLS §8.4.5)

legal return types: void, any primitive data type, an Object reference or Array type●

if void is used, the method may not use a return statement with an expression●

 return; // legal
 return(x); // illegal

if a primitive data type is used, the method must return a value that is promotable to the
declared type

●

if an array type is used, the method must return a value of the same array type. For example,
if the returnType is String[][] then the method must return a String[][] array

●

a method can declare a return type without having a return statement in its body●

class DizzyDean {
 int pitch() { throw new RuntimeException("90 mph?!"); }
}

parameterList

consists of a comma-separated list of parameter declarations

 myMethod(int a, long c, boolean flag){}

●

a parameter may also be declared final●

Java Quick Reference - Language Fundamentals - Method Declarations

http://www.janeg.ca/scjp/lang/method.html (1 of 3) [15/03/2004 8:47:36 AM]

mailto:feedback@janeg.ca

 myMethod(final int i){}

throwsClause

consists of the keyword throws and a comma-separated list of the exceptions that may be
thrown

●

identifies all the checked exceptions that may be thrown but not caught by the method●

the throws clause must include exceptions that may be thrown by another method being
invoked by the declared method

●

it is not necessary to throw the predefined exceptions which are subclasses of the Error or
RuntimeException classes (JLS §8.4.4)

●

a method that overrides another method cannot be declared to throw more checked
exceptions than the method being overidden.(JLS § 8.4.4)

class classA {
 void methodA() throws exX, exY{
 // method body
 }
}

class classB extends classA {
 void methodA() throws exX { // can throw less exceptions
 // method body
 }
}

class classC extends classA {
 void methodA() throws exX, exY, exZ { // illegal
 // method body
 }
}

●

Method Signature

A method signature is made up of the method name and parameter list (it does not include
the return type)

●

it is illegal for a class to declare two methods with the same signature●

Method body

a static method cannot use this or super operators in it's body (static implies a class method
unrelated to any specific instance) (JLS §8.4.3.2)

●

a method declared native or abstract has a semi-colon (;) for a body. Do not use curly
braces {}. (JLS §8.4.5)

 Example of native and abstract method declarations:

 public native void close() throws IOException;
 public abstract void open() throws IOException;

 versus non-native or abstract method declaration:

 public void close() throws IOException {
 // Method body
 }

●

if a method is declared void then the body should not include a return statement that has an●

Java Quick Reference - Language Fundamentals - Method Declarations

http://www.janeg.ca/scjp/lang/method.html (2 of 3) [15/03/2004 8:47:36 AM]

expression (JLS §8.4.5)

 public void methodA() {
 return(1 + 1); // illegal
 }

 public void methodA() {
 return; // legal
 }

Also see

Understanding that parameters are passed by value and not by reference

Code Examples
TestMethods.java●

Tips
any method can throw a Runtime or Error exception without declaring it in the throws clause●

methods having the same name and parameter types do not have the same signature unless
the parameter types are listed in the same order

●

Traps
an abstract method also declared private, native, final, synchronized, or strictfp●

an abstract method declared in a non-abstract class●

a native or abstract method with a method body●

method returning a type which is not convertible to the declared return type●

a void method returning a value●

a static method referencing this or super●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Method Declarations

http://www.janeg.ca/scjp/lang/method.html (3 of 3) [15/03/2004 8:47:36 AM]

http://www-106.ibm.com/developerworks/java/library/j-praxis/pr1.html
http://www.janeg.ca/scjp/lang/TestMethods.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - main()

Syntax

 public static void main(String[] args) {
 // method body
 }

entry point for a Java application●

required by all Java applications (not required in Applets)●

must be declared public static void●

void must appear before main()

Example:
 static public void main(String[] args){} // legal
 public static void main(String[] args){} // legal
 public void static main(String[] args){} // illegal

●

can also be declared final●

main() has only one argument: a String array●

the argument can be declared in many ways and the variable name does not have to be args

Example:

 main(String args[])
 main(String [] args)
 main(String[] params)
 main(String[] args) // standard convention

●

the args array is used to access command line arguments

Example:
 java MyApp test this out

●

the args array uses a zero based index therefore args[0] would return "test" in the above
example

●

an application can have more than one main() method as every class can have a main()
method

●

which main() is used by an application depends on the class started at runtime●

advantage is that each class can use it's own main() as a testing structure for the class●

main() is inherited and can be overridden if not declared final●

Code compiled with JDK 1.3 will work ok even it is declared private, protected or has no access
modifier; however, for the purpose of the certification exam the correct method declaration is
public static void main(String[] varname)
(see discussion at JavaRanch)

Code Examples
TestMain.java●

Java Quick Reference - Language Fundamentals - main()

http://www.janeg.ca/scjp/lang/main.html (1 of 2) [15/03/2004 8:47:37 AM]

mailto:feedback@janeg.ca
http://www.javaranch.com/ubb/Forum24/HTML/003949.html
http://www.janeg.ca/scjp/lang/TestMain.java

Tips
main() can be declared final●

main() is inherited and can be overridden if not declared as final●

args[0] references first command line argument after the application name (arrays in Java
are zero-based)

●

main() can be declared public static void ... or static public void ...●

the variable name does not have to be args; can be anything as long as the type is String[]●

Traps
main() declared other than according to the standard convention●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - main()

http://www.janeg.ca/scjp/lang/main.html (2 of 2) [15/03/2004 8:47:37 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Variable declarations
and Identifiers

Syntax

 modifiers Type declarator;

Example:
 public int i;
 private long myNumber;
 protected myVar = 10;

variables provide named access to data stored in memory●

variables may be declared as a primitive type or a reference type●

Java supports two different kinds of variables: field or class variables and local or automatic
variables

●

field variables are declared as members of a class; they store information (data) relating to an
object

●

valid field modifiers: public, protected, private, final, static, transient, volatile●

local or automatic variables are declared within methods; they are temporary placeholders
which store values and references to data for objects being operated on by the method

●

valid local modifiers: final●

Identifiers

an identifier is an unlimited-length sequence of Java letters and Java digits●

an identifier cannot have the same spelling as a Java keyword, boolean literal, or null literal●

valid identifiers begin with one of the following:

a Unicode letter❍

the underscore character (_)❍

a dollar sign ($)❍

●

JLS §3.8 recommends that the dollar sign only be used for identifiers that are mechanically
generated (ie within IDE's)

●

JPL pg 5.4 recommends sticking to one language when writing identifiers as a number of
characters look alike in various languages but have seperate Unicode values

●

methods and variables can have the same names; method identifiers always take the form

 methodName()

the parantheses allow Java to recognize the identifier as a method vs a variable and therefore
distinguish between the two.

●

Naming Conventions

Package names - lowercase.for.all.components●

Class and Interface names - CaptializedWithInternalWordsCaptialized●

Method names - firstWordLowercaseButInternalWordsCapitalized()●

Variable names - firstWordLowercaseButInternalWordsCaptialized●

Constants - UPPER_CASE_WITH_UNDERSCORES●

Java Quick Reference - Language Fundamentals - Variable declarations and Identifiers

http://www.janeg.ca/scjp/lang/identifiers.html (1 of 2) [15/03/2004 8:47:38 AM]

mailto:feedback@janeg.ca

Tips
variables can have the same name as a method or a class●

Traps
local (automatic) variables declared with a modifier other than final●

identifier names beginning with a number or # sign●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Variable declarations and Identifiers

http://www.janeg.ca/scjp/lang/identifiers.html (2 of 2) [15/03/2004 8:47:38 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Keywords

Keyword type Keywords

Primitive types boolean, byte, char, double, float, int, long, short

Access modifiers public, private, protected

Special modifiers
abstract, final, native, static, strictfp, synchronized, transient,
volatile

Control flow if, else, do, while, switch, case, default, for, break, continue

OOP specific class, extends, implements, import, instanceof, interface, new,
package, super, this

Exception handling catch, finally, try, throw, throws

Method specific return, void

Unused * const, goto

* Note

const and goto are not used in Java however they are reserved as keywords.●

true and false are Boolean Literals; null is a null Literal. They cannot be used
as identifiers.

●

Tips
Java keywords are always lowercase; you can immeadiately eliminate any capitalized words
appearing in a question listing possible keywords

●

Traps
main listed as a possible keyword●

capitalized words listed as possible keywords; particularly wrapper classes Integer, Boolean,
etc

●

C/C++ keywords listed as possible Java keywords●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Keywords

http://www.janeg.ca/scjp/lang/keywords.html [15/03/2004 8:47:38 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Default values

Type Default value

boolean false

byte 0

char '\u0000'

short 0

int 0

long 0l

float 0.0f

double 0.0d

Object null

Array based on Array type

Automatic Initialization

Field variables (class members) are automatically initialized to default values●

Local variables (method or constructor variables) are not automatically initialized●

Arrays, whether field or local variables, are automatically initialized to the default values of
their declared type

class CheckInit {

 // field variable
 static int i;
 // field array reference variable
 static String[] s = new String[10];

 static void myMethod(){

 int j; // local variable
 int[] a = new int[5]; // local variable array

 // causes compile error if not explicitly initialized
 j = 10;

 System.out.println(" Local variable: " + j);
 System.out.println(" Local array ref: " + a[3]);
 }

 public static void main(String[] args) {
 System.out.println("Field variable i: " + i);
 System.out.println(" Field array ref: " + s[2]);
 myMethod();
 }
}

Output of CheckInit:

 Field variable i: 0 // default value of int
 Field array ref: null // default value for String[]
 Local variable: 10 // explicit value
 Local array ref: 0 // default value of int[]

●

Timing and duration of variable initializations (JLS §4.5.3)

Variable Type Definition Initialization

Java Quick Reference - Language Fundamentals - Default Values

http://www.janeg.ca/scjp/lang/defaults.html (1 of 3) [15/03/2004 8:47:38 AM]

mailto:feedback@janeg.ca

Class (Field) Declared with the
static keyword within a
class or interface

Created when the class or interface is
prepared.
Automatically initialized to the
default value of its type
Duration: as long as the class is
loaded

Instance (Field) Declared within a class
without the keyword
static

Created when a new instance is
created
Automatically initialized to the
default value of its type
Duration: for the life of the instance
object

Array components unnamed variables
created when an array
object is created not
when declared

intialized to the default value of the
array type
Duration: until the array is no longer
referenced

Method parameters named argument values
passed to a method

a new parameter variable is created
each time the method is invoked
initialized with the corresponding
argument value from the method call
Duration: method execution

Constructor parameters named argument values
passed to the
constructor

a new parameter variable is created
each time a new instance is created or
the constructor is called
initialized to the corresponding
argument value
Duration: construction execution

Exception-handling parameter variables in a catch
clause

a new exception-handling parameter
is created each time an exception is
caught by a catch clause
initialized with the actual object
associated with the exception
Duration: catch clause execution

Local variables declared by local
variable declarations

a new local variable is created
whenever flow of control enters a
new block or for statement
initialized to whatever value is
explicitly set within the block or for
statement
Duration: execution of the block or
for statement

Tips
only field variables are automatically initialized to their types default value; local variables
must be explicitly initialized

●

arrays are initialized to the default value of their type when they are created, not declared,
even if they are local variables

●

Traps
an empty string vs null as the default value for a String object●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

Java Quick Reference - Language Fundamentals - Default Values

http://www.janeg.ca/scjp/lang/defaults.html (2 of 3) [15/03/2004 8:47:38 AM]

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Default Values

http://www.janeg.ca/scjp/lang/defaults.html (3 of 3) [15/03/2004 8:47:38 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Arrays

Array declarations

arrays are Java objects●

all Java arrays are technically one-dimensional. Two-dimensional arrays are arrays of arrays.●

declaring an array does not create an array object or allocate space in memory; it creates a
variable with a reference to an array

●

array variable declarations must indicate a dimension by using []

Examples of valid array declarations: (JJ pg84)

 String[]s;
 String []s;
 String [] s;
 String [] s; // extra white space ignored
 String[] s;
 String[] s; // extra white space ignored
 String s[];
 String s [];
 String s []; // extra white space ignored

 String[] s[];
 String[][]s;
 String s [] []; // extra white space ignored

●

declaring the size of the array with the following notation is illegal

 String[5] s; // illegal declaration

●

the standard convention for declaring arrays is:

 String[] s; // one-dimensional array
 String[][] s; // two-dimensional array

●

Initializing arrays

all arrays are zero-based●

arrays must be indexed by int values or byte, short or char values (as these can be promoted
to int) (JLS §10.4)

●

using a long index value to access an array causes a compile error●

attempting to access an array with an index less than 0 or greater than the length of the array
causes an ArrayIndexOutOfBoundsException to be thrown at runtime (JLS §10.4)

●

since arrays are Objects they can be initialized using the new operator●

when created, arrays are automatically initialized with the default value of their type

String[] s = new String[100]; // default values: null
boolean[] b = new boolean[4]; // default values: false
int[] i = new int[10][10]; // default values: 0

●

array references declared as members are initialized to null BUT array references declared in
methods are not initialized

●

class TestArray {

Java Quick Reference - Language Fundamentals - Arrays

http://www.janeg.ca/scjp/lang/arrays.html (1 of 3) [15/03/2004 8:47:39 AM]

mailto:feedback@janeg.ca

 int[] arr; // member declaration, initialized to 'null'

 public static void main(String[] args) {
 int[] arr1; // reference variable 'arr1' not initialized

 // compiles ok
 System.out.println("arr:" + new TestArray().arr);
 // compile error
 System.out.println("arr1: " + arr1);
 }
}

as arrays are allocated at runtime, you can use a variable to set their dimension

 int arrSize = 100;
 String[] myArray = new String[arrSize];

●

you can use curly braces {} as part of an array declaration to initialize the array

 String[] oneDimArray = { "abc","def","xyz" };

●

Note

Curly braces {} can only be used in array declaration statements.●

 String[] s;
 // illegal initialization
 s = { "abc", "def", "hij");

 int[] arr = new int[] {1,2,3}; // legal

you can assign an array a null value but you can't create an empty array by using a blank index

 int[] array = null; // legal
 // illegal initialization
 int[] array = new int[];

●

Initializing two-dimensional arrays

the first dimension represents the rows, the second dimension, the columns●

curly braces {} may also be used to initialize two dimensional arrays. Again they are only valid
in array declaration statements.

 int[][] twoDimArray = { {1,2,3}, {4,5,6}, {7,8,9} };

●

you can initialize the row dimension without initializing the columns but not vice versa

 int[][] myArray = new int[5][];
 // illegal
 int[][] myArray = new int[][5];

●

the length of the columns can vary

 class TestTwoDimArrays {
 // initialize # of rows
 static int [][] myArray = new int[3][];

 public static void main(String[] args) {

 myArray[0] = new int[3]; // initialize # of cols
 myArray[1] = new int[4]; // in each row
 myArray[2] = new int[5];

 for(int i=0; i<3; i++) // fill and print the array
 fillArray(i, i+3);

 System.out.println();
 } // end main()

 private static void fillArray(int row, int col) {

●

Java Quick Reference - Language Fundamentals - Arrays

http://www.janeg.ca/scjp/lang/arrays.html (2 of 3) [15/03/2004 8:47:39 AM]

 for(int i=0; i<col; i++)
 myArray[row][i] = i;

 for(int i=0; i<col; i++)
 System.out.print(myArray[row][i]);

 System.out.println();
 }

}

Output of TestTwoDimArrays:

 012
 0123
 01234

Also see

Sun Tech Tip: Manipulating Java Arrays

Code Examples
TestTwoDimArrays.java●

Tips
array index operator [] has highest level of precedence●

integer variables can be used as array dimension values●

Traps
incorrect array declaration statements, particularly:
 arrayType [#] varName;

●

incorrect array initialization statements, particularly:
 arrayType[] varName = new arrayType[2];
 varName = { value, value, value };

●

negative values for array index●

long value for array index●

array declaration used as an array creation statement●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Arrays

http://www.janeg.ca/scjp/lang/arrays.html (3 of 3) [15/03/2004 8:47:39 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0815.html#tip1
http://www.janeg.ca/scjp/lang/TestTwoDimArrays.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Primitive Types

Data
Type

Bit Size Range Min/Max values Default

boolean n/a true or false n/a false

byte
signed 8-bit
integer -(27) to 27-1 -128 to 127 0

char
16-bit
Unicode 2.0
character

0 to 216-1 0 to 65,535 \0000

short
signed 16-bit
integer -(215) to 215-1 -32,768 to 32,767 0

int
signed 32-bit
integer -(231) to 231-1

-2,147,483,648 to
2,147,483,467

0

long
signed 64-bit
integer -(263) to 263-1

-9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

0l

float
signed 32-bit
floating-point

NEGATIVE_INFINITY
to
POSITIVE_INFINITY

Can also have the value
NaN (Not a number)

0.0f

double
signed 64-bit
floating-point

NEGATIVE_INFINITY
to
POSITIVE_INFINITY

Can also have the value
NaN (Not a number)

0.0d

arithmetic with floating-point numbers will never throw an exception; instead one of the
constant values: NEGATIVE_INFINITY, POSITIVE_INFINITY, or NaN are returned (BB
pg 123)

●

Variables declared as primitive types are not object references. They are placeholders for
storing primitive values (JJ pg29)

●

by default integer values are of type int and floating-point values are of type double●

float values are single-precision●

double values are double-precision●

Wrapper classes

all the primitive types have corresponding wrapper classes which allow you to create
objects of type Integer, Boolean, Float, etc.

●

the wrapper classes have the same names as the primitive types except they begin with a
Captial.

●

!!! Warning - do NOT mix up the Types !!!

 boolean b;

IS NOT THE SAME AS

 Boolean b;

You can say: boolean b = true;
You CANNOT say:
 Boolean b = true; -> Boolean is a class, must use
 Boolean b = new Boolean(true);

Java Quick Reference - Language Fundamentals - Primitive Types

http://www.janeg.ca/scjp/lang/primitives.html (1 of 2) [15/03/2004 8:47:40 AM]

mailto:feedback@janeg.ca

Also see

Differentiate between reference and primitive types

Traps
variables of primitive types handled as Objects●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Primitive Types

http://www.janeg.ca/scjp/lang/primitives.html (2 of 2) [15/03/2004 8:47:40 AM]

http://www-4.ibm.com/software/developer/library/praxis/pr8.html?dwzone=java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Numeric Literals
numeric constants are written using literals●

Integer literals

Integer constants are strings of octal, decimal, or hexidecimal digits

decimal base 10 10
octal base 8 010 (8) // preceded by a zero
hex base 16 0xA (16) // preceded by 0x

●

Integer constants are long if they end in l or L

 32l or 32L // capital L recommended use

●

if an int literal is assigned to a short or a byte and it's value is within legal range, the literal
is assumed to be a short or a byte.

 byte b = 5; // assumed to be a byte
 short s = 32500; // assumed to be a short
 short sh = 50000; // illegal

●

In all other cases you must explicitly cast when assigning an int to a short or byte. (JPL pg
108)

 int i = 5; // declared and initialized int
 byte b; // declared byte

 b = i; // causes compile error
 b = (byte)i; // compiles

●

Floating-point literals JPL pg 108

floating-point numbers are expressed as decimal numbers with an optional decimal point

Examples of valid floating-point numbers:

 0.10
 1.
 .0001
 1.8e1 // 'e' = exponential

●

at least one digit must be present●

floating-point constants are double values unless they are suffixed with an f or F●

if a d or D suffix is used they are double values

 10.5 // assumed double value
 10.5F // float value

●

a double constant cannot be assigned to a float variable even if the double is within the float
value range; however, a double can be cast as a float

 double d = 3.213; // double constant
 float f;

●

Java Quick Reference - Language Fundamentals - Numeric Literals

http://www.janeg.ca/scjp/lang/literals.html (1 of 2) [15/03/2004 8:47:40 AM]

mailto:feedback@janeg.ca

 f = d; // compile error
 f = (float)d; // compiles

Traps
assigning a non-integer literal to a byte, short or character●

assigning a double literal to a float●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Numeric Literals

http://www.janeg.ca/scjp/lang/literals.html (2 of 2) [15/03/2004 8:47:40 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Character Literals
the char type represents 16-bit Unicode characters●

Unicode is a superset of the ASCII character set which allows non-English language
characters

●

any Unicode character can be written as a literal using the Escape character (backslash \) and
it's hexadecimal representation

 '\udddd' // where 'dddd' = hex digit (0 - F)

●

single characters are represented within single quotes

 'a' // char literal
 '9' // char literal

●

there are three exceptions that require the use of the Escape character

 single quote ' \' ' displays as '
 double quote ' \" ' displays as "
 backslash ' \\ ' displays as \

●

there are certain special characters which can be represented by escape sequences●

Esc Char Unicode Char Definition

\n \u000A newline

\t \u0009 tab

\b \u0008 backspace

\r \u000D return

\f \u000C form feed

\ddd octal value

Octal character constants can have three digits or less (\000 through \377)●

!!! Warning !!!

The compiler translates Unicode characters at the beginning of the compile cycle.

Using the Unicode escape characters \u000A for newline and \u000D for return in a
String or comment produces a compile-error as they are interpreted, literally, as
'end-of-line'.

Always use the special characters '\n' or '\r'

Traps
String literal "c" assigned to char type●

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Character Literals

http://www.janeg.ca/scjp/lang/charLiteral.html (1 of 2) [15/03/2004 8:47:41 AM]

mailto:feedback@janeg.ca

Java Quick Reference - Language Fundamentals - Character Literals

http://www.janeg.ca/scjp/lang/charLiteral.html (2 of 2) [15/03/2004 8:47:41 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Language Fundamentals - Class Literals
new in JDK 1.1●

class literals are created by appending .class to the name of a primitive or reference type

 System.out.println(int.class);
 // output: int
 System.out.println(System.class);
 // output: java.lang.System

●

you cannot use a variable with .class●

 int i = 5;
 String s = "Hello";

 System.out.println(i.class); // compile error
 System.out.println(s.class); // compile error

Also see

Sun Tech Tip: Using Class Literals

Source Package Import Class Interface Constructors

 Methods main() Identifiers Keywords Defaults Arrays

 Primitives # Literals char Literal String Literals Class Literals

Java Quick Reference - Language Fundamentals - Class Literals

http://www.janeg.ca/scjp/lang/classLiteral.html [15/03/2004 8:47:41 AM]

mailto:feedback@janeg.ca
http://developer.java.sun.com/developer/TechTips/1997/tt1118.html#tip3

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification - String
Class

Strings can be created implicitly by:

using a quoted string ie "Hello", or,1.

by using + or += on two String objects to create a new one2.

●

strings can be created explicitly by using the new operator●

new String() creates an empty string●

new String(String value) creates a new string that is a copy of the string object value●

two basic String methods are

public int length()❍

public char charAt(int index). Index values range from 0 to length()-1❍

●

any String method requiring an index will throw an IndexOutOfBoundsException if
0 > index > length()-1

●

there are also a number of indexOf() methods which allow you to find the first and last
position of a character or substring within a string

 indexOf(char ch) // first position of 'ch'
 indexOf(String str) // first position of 'str'
 lastIndexOf(char ch) // last position of 'ch'
 lastIndexOf(String str) // last position of 'str'

●

each of the above methods also have overloads that allow a second int start argument which
specifies the character position other than 0 from which to begin the search

●

all the methods return -1 if the character or string is not found●

Comparison

characters in strings are compared numerically by their Unicode values●

equals() method returns true if both string objects are of the same length and have the same
sequence of Unicode characters

●

equalsIgnoreCase() can be used to compare strings, ignoring wether a character is lowercase
or uppercase

●

compareTo returns an int that is <, =, or > than 0 if one string, based on it's Unicode
characters, is less-than, equal to or greater-than another string

●

regions of strings can also be compared●

public boolean regionMatches(int start, String other,
 int ostart, int len)
public boolean regionMatches(boolean ignoreCase, int start,
 String other,
 int ostart, int len)

an area of each string is compared for the number of characters specified by len●

simple tests for the beginning and ending of strings can be done using●

public boolean startsWith(String prefix, int toOffset)
public boolean startsWith(String prefix)
public boolean endsWith(String suffix)

Note

Java Quick Reference - java.lang Package - String Class

http://www.janeg.ca/scjp/pkglang/string.html (1 of 3) [15/03/2004 8:47:42 AM]

mailto:feedback@janeg.ca

These methods return true if a comparison is done with an empty string●

 "String".endsWith(""); // true
 "String".startsWith(""); // true

Comparisons using intern()

two utility methods hashCode() and intern() are available●

hashCode() returns the same hash value for any two strings having the same contents●

intern() returns a String that has the same contents as the one it is invoked on AND any two
strings having the same content return the same String object allowing comparisons to be
done using String references vs string contents

●

using intern() for comparison purposes is equivalent to comparing contents but is much
faster

●

Related strings

several methods return new strings that are like the original but with the specified
modifications

public String concat(String str)
public String replace(char oldChar, char newChar)
public String substring(int beginIndex)
public String substring(int beginIndex, int endIndex)
public String toLowerCase()
public String toUpperCase()
public String trim()

Because all of the above methods return new strings; comparisons such as

●

 String s = "String"; // in the pool

 if(" String ".trim() == s)
 System.out.println("Equal");
 else
 System.out.println("Not Equal");

OR

 if(" String ".trim() == "String")
 System.out.println("Equal");
 else
 System.out.println("Not Equal");

produce NOT EQUAL. The string pool is NOT checked for a matching string and as a result
the string object references are always different or, not equal (refer to String Literals -
intern() for more info on the string pool)

●

HOWEVER, if the invoked method does not produce a different string ie the resulting
string, after the method invocation, is the same as the original, THEN the original object
reference is returned by the method and the results are EQUAL

 if("String".substring(0,6) == "String")
 System.out.println("Equal");
 else
 System.out.println("Not Equal");

 if("String".replace('t','t') == "String")
 System.out.println("Equal");
 else

●

Java Quick Reference - java.lang Package - String Class

http://www.janeg.ca/scjp/pkglang/string.html (2 of 3) [15/03/2004 8:47:42 AM]

 System.out.println("Not Equal");

Strings and Arrays

there are a number of constructors and methods that will convert a character array to a String
and vice versa

●

public String(char[] value)
public String(char[] value, int offset, int count)

public static String copyValueOf(char[] data)
public static String copyValueOf(char[] data,
 int offset, int count)
public void getChars(int srcBegin, intSrcEnd,
 char[] dst, int dstBegin)
public char[] toCharArray()

there are also a number of constructors and methods that convert 8-bit character arrays to and
from 16-bit String objects

●

public String(byte bytes[], int offset, int length)
public String(byte bytes[])

public byte[] getBytes()
public String(byte bytes[], int offset, int length, String enc)
public String(byte, bytes[], String enc)
public byte[] getBytes(String enc)

where enc is the standard name for the character language encoding ie UTF8 or
ISO-Latin-1

●

Also see

Sun Tech Tip: Interning Strings

Example Code
TestStringOperations.java●

TestStringCompares.java●

TestStringModifications.java●

TestStringMethods.java●

TestParseLine.java●

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference - java.lang Package - String Class

http://www.janeg.ca/scjp/pkglang/string.html (3 of 3) [15/03/2004 8:47:42 AM]

http://developer.java.sun.com/developer/TechTips/1999/tt0114.html#tip3
http://www.janeg.ca/scjp/pkglang/TestStringOperations.java
http://www.janeg.ca/scjp/pkglang/TestStringCompares.java
http://www.janeg.ca/scjp/pkglang/TestStringModifications.java
http://www.janeg.ca/scjp/pkglang/TestStringMethods.java
http://www.janeg.ca/scjp/pkglang/TestParseLine.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

The java.lang Package Certification -
StringBuffer Class

used to modify or manipulate the contents of a string●

StringBuffer objects are NOT implicitly created; the following will not compile●

StringBuffer sb = "Hello";
StringBuffer sb = { "Hello" };

you must use the new operator to invoke one of three constructors

public StringBuffer()
public StringBuffer(int length)
public StringBuffer(String str)

●

every StringBuffer has an initial capacity (length) of 16 characters●

if the internal buffer overflows it is automatically made larger however it is more efficient to
specify the capacity only once,

●

there are three methods available to manage capacity●

public StringBuffer(int capacity)
public synchronized void ensureCapacity(int minimum)
public int capacity()
public int length()
public void setLength(int newLength)

the String methods which return a new object ie concat(), replace(), etc actually use
StringBuffer behind the scenes to make the modifications and then returns the final String
using toString(). For example, the following code (JJ pg 208)

●

String s = "";
s = s + "a" + "b";

is treated, by the compiler, as something similar to●

String s = "";
s = new StringBuffer("").append("a").append("b").toString();

the StringBuffer class does not inherit from String●

to use a StringBuffer object as a parameter to a method requiring a String, use the
StringBuffer toString() method. For example, to print the result of a StringBuffer object
manipulation

●

StringBuffer sb = new StringBuffer("Hello");
sb.append(" World");
System.out.println(sb.toString());

StringBuffer has overloaded append() and insert() methods to convert any type, including
Object and character arrays, to a String; both methods return the original StringBuffer object

●

the reverse() method returns the original StringBuffer object with the characters in reverse
order

●

you can access and modify specific characters or a range of characters

public char charAt(int index)
public void setCharAt(int index, char ch)

●

Java Quick Reference - java.lang Package - StringBuffer Class

http://www.janeg.ca/scjp/pkglang/stringBuffer.html (1 of 2) [15/03/2004 8:47:44 AM]

mailto:feedback@janeg.ca

public StringBuffer replace(int start, int end, String str)

public StringBuffer deleteCharAt(int index)
public StringBuffer delete(int start, int end)

Note: the subString() method returns a String
public String subString(int start)
public String subString(int start, int end)

there are no methods to remove part of a buffer; you need to create a character array and
build a new buffer with the portion of the array you're interested in; this can be done using

●

public void getChars(int srcBegin, int srcEnd,
 char dst[], int dstBegin)

Example Code
TestStringBuffer.java●

Main Classes
Wrapper
Classes

Math Class
String

Immutability
String Class

StringBuffer
Class

Java Quick Reference - java.lang Package - StringBuffer Class

http://www.janeg.ca/scjp/pkglang/stringBuffer.html (2 of 2) [15/03/2004 8:47:44 AM]

http://www.janeg.ca/scjp/pkglang/TestStringBuffer.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Overview
on an operating system a running program is known as a process●

a single process can have seperate runnable tasks called threads●

a thread is a single sequential flow of control within a process●

a thread is also referred to as a lightweight process●

with a single-processor CPU, only one thread is executing at any given time●

the CPU quickly switches between active threads giving the illusion that they are all
executing at the same time (logical concurrency)

●

on multi-processor systems several threads are actually executing at the same time (physical
concurrency)

●

multi-programming occurs when multiple programs or processes are executed●

multi-threading occurs when concurrency exists amoung threads running in a single process
(also referred to as multi-tasking)

●

Java provides support for multi-threading as a part of the language●

support centers on the:

java.lang.Thread class❍

java.lang.Runnable interface❍

java.lang.Object methods wait(), notify(), and notifyAll❍

synchronized keyword❍

●

every Java program has at least one thread which is executed when main() is invoked●

all user-level threads are explicitly constructed and started from the main thread or by a
thread originally started from main()

●

when the last user thread completes any daemon threads are stopped and the application
stops

●

a thread's default daemon status is the same as that of thread creating it●

you can check the daemon status using isDaemon()●

you can set the daemon status using setDaemon().

You cannot change a thread's status after it has been started

●

main() daemon status is false●

if you want all your threads to quit when main() completes you can set their status to
daemon using setDaemon(true)

●

there are two basic ways to create and run threads

by subclassing the Thread class1.

by implementing the Runnable interface2.

●

Also see

Sun Tutorial on Threads●

IBM Redbook: Java Thin-Client Programming - Introduction to Threads●

SunTech Tip: Why Use Threads?●

Beware the daemons●

Exploring Java, Chapter 6, Threads●

Java Quick Reference - Threads - Thread Overview

http://www.janeg.ca/scjp/threads/overview.html (1 of 2) [15/03/2004 8:47:46 AM]

mailto:feedback@janeg.ca
http://web2.java.sun.com/docs/books/tutorial/essential/threads/index.html
http://www.redbooks.ibm.com/redbooks/SG245118.html
http://developer.java.sun.com/developer/TechTips/2000/tt0328.html
http://www.absolutejava.com/articles/beware-the-daemons.html
http://www.oreilly.com/catalog/expjava/excerpt/index.html

Example Code
Source code to check daemon status of main()●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread Overview

http://www.janeg.ca/scjp/threads/overview.html (2 of 2) [15/03/2004 8:47:46 AM]

http://www.janeg.ca/scjp/threads/CheckMainDaemon.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - The Thread Class
the easiest way to create a thread is by subclassing java.lang.Thread

 class BasicThread extends Thread {
 char c;

 BasicThread(char c) {
 this.c = c;
 }
 }

●

to actually start the thread running you must invoke its start() method●

 BasicThread bt = new BasicThread('!');
 BasicThread bt1 = new BasicThread('*');
 bt.start();
 bt1.start();

the start() method allocates system resources required for a thread, schedules the thread to
run and invokes the run() method

●

the above code will execute but nothing will happen●

if you want your thread to do something you need to override the run() method●

the run() method is actually defined in the Runnable interface which the class Thread
implements

●

 public void run() {
 for(int i=0; i<100; i++) {
 System.out.print(c);
 }
 }

if the above code is added and the threads started you see something like:●

!!!
!
!****

the output is intermingled because the threads are running concurrently and are interleaved●

you can alter thread processing with program control mechanisms●

one way is to use the sleep() method which is defined in the Thread class●

the sleep() method stops the execution of a thread for a given number of milliseconds●

it also throws an InterruptedException so you need to wrap it in a try-catch block●

adding sleep() to the run method can alter the threads execution●

Note

the sleep() method uses a timed wait() but does not tie up the current object's
lock (for information on locks see Synchronization)

●

New run() method:

 public void run() {
 for(int i=0; i<100; i++) {

Java Quick Reference - Threads - The Thread Class

http://www.janeg.ca/scjp/threads/threadClass.html (1 of 3) [15/03/2004 8:47:47 AM]

mailto:feedback@janeg.ca

 System.out.print(c);

 try{
 sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
 }

Example output:

!!!*!*!**!!!*!!*!***!*!!***!*!*!*!*!!!!***!!*!*
!!*!**!*!!*!**!*!**!!*!**!!*!!*!*!**!*!***!!!!*!*
!!*!**!*!*!*!*!*!*!*!!*!*!*!!!*!*!!!*!*!!*!*!*!*!
!*!**!*!*!**!**!!*!***!!!****!*!!****!*!**!!**!!!

you can give a thread a name by creating it with a String argument

 Thread t = new Thread("Thread1");

●

if a thread is created without a name, one is automatically generated in the form Thread-n,
where n is an integer

●

the following is output from TwoThreadsTest which creates two SimpleThread's and
displays their automatically generated names using the getName() method of the Thread
class.

●

 0 Thread-0
 0 Thread-1
 1 Thread-0
 1 Thread-1
 2 Thread-0
 2 Thread-1
 3 Thread-0
 3 Thread-1
 4 Thread-1
 4 Thread-0
 DONE! Thread-0
 DONE! Thread-1

ThreadGroup

you can group threads using the ThreadGroup class●

this allows multiple threads to be handled as one unit ie for setting priority, destroying, etc●

threads in the same group can access information about other threads in the group but not
about the parent thread or threads in other groups

●

a ThreadGroup can have both daemon and nondaemon threads●

Example Code
BasicThread.java●

Bouncing Ball Applet: UpDown.java●

PrimeNumbers Applet: Ex1.java●

Java Is Hot: Thread1.java●

Traffic Simulation: Traffic.java and SetOfLights.java●

Java Quick Reference - Threads - The Thread Class

http://www.janeg.ca/scjp/threads/threadClass.html (2 of 3) [15/03/2004 8:47:47 AM]

http://www.janeg.ca/scjp/threads/TwoThreadsTest.java
http://www.janeg.ca/scjp/threads/SimpleThread.java
http://www.janeg.ca/scjp/threads/BasicThread.java
http://www.janeg.ca/scjp/threads/UpDown.java
http://www.janeg.ca/scjp/threads/Ex1.java
http://www.janeg.ca/scjp/threads/Thread1.java
http://www.janeg.ca/scjp/threads/Traffic.java
http://www.janeg.ca/scjp/threads/SetOfLights.java

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - The Thread Class

http://www.janeg.ca/scjp/threads/threadClass.html (3 of 3) [15/03/2004 8:47:47 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Thread Synchronization
every instance of class Object and its subclass's has a lock●

primitive data type fields (Scalar fields) can only be locked via their enclosing class●

fields cannot be marked as synchronized however they can be declared volatile which orders
the way they can be used or you can write synchronized accessor methods

●

array objects can be synchronized BUT their elements cannot, nor can their elements be
declared volatile

●

Class instances are Objects and can be synchronized via static synchronized methods●

Synchronized blocks

allow you to execute synchronized code that locks an object without requiring you to invoke
a synchronized method

●

 synchronized(expr) {
 // 'expr' must evaluate to an Object
 }

Synchronized methods

declaring a method as synchronized ie synchronized void f() is equivalent to●

 void f() { synchronized(this) {
 // body of method
 }
 }

the synchronized keyword is NOT considered part of a method's signature. IT IS NOT
AUTOMATICALLY INHERITED when subclasses override superclass methods

●

methods in Interfaces CANNOT be declared synchronized●

constructors CANNOT be declared synchronized however they can contain synchronized
blocks

●

synchronized methods in subclasses use the same locks as their superclasses●

synchronization of an Inner Class is independent on it's outer class●

a non-static inner class method can lock it's containing class by using a synchronized block●

 synchronized(OuterClass.this) {
 // body
 }

Locking

locking follows a built-in acquire-release protocol controlled by the synchronized keyword●

a lock is acquired on entry to a synchronized method or block and released on exit, even if
the exit is the result of an exception

●

you cannot forget to release a lock●

locks operate on a per thread basis, not on a per-invocation basis●

Java uses re-entrant locks ie a thread cannot lock on itself●

class Reentrant {

Java Quick Reference - Threads - Thread Synchronization

http://www.janeg.ca/scjp/threads/synchronization.html (1 of 2) [15/03/2004 8:47:47 AM]

mailto:feedback@janeg.ca

 public synchronized void a() {
 b();
 System.out.println("here I am, in a()");
 }
 public synchronized void b() {
 System.out.println("here I am, in b()");
 }
}

in the above code, the synchronized method a(), when executed, obtains a lock on it's own
object. It then calls synchronized method b() which also needs to acquire a lock on it's own
object

●

if Java did not allow a thread to reacquire it's own lock method b() would be unable to
proceed until method a() completed and released the lock; and method a() would be unable to
complete until method b() completed. Result: deadlock

●

as Java does allow reentrant locks, the code compiles and runs without a problem●

the locking protocol is only followed for synchronized methods, it DOES NOT prevent
unsynchronized methods from accessing the object

●

once a thread releases a lock, another thread may acquire it BUT there is no guarantee as to
WHICH thread will acquire the lock next

●

Class fields and methods

locking an object does not automatically protect access to static fields●

protecting static fields requires a synchronized static block or method●

static synchronized statements obtain a lock on the Class vs an instance of the class●

a synchronized instance method can obtain a lock on the class●

 synchronized(ClassName.class) {
 // body
 }

the static lock on a class is not related to any other class including it's superclasses●

a lock on a static method has no effect on any instances of that class (JPL pg 185)●

you cannot effectively protect static fields in a superclass by adding a new static
synchronized method in a subclass; an explicit block synchronization is the preferred way

●

nor should you use synchronized(getClass()); this locks the actual Class which might be
different from the class in which the static fields are declared

●

Example Code
Source code for reentrant example●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread Synchronization

http://www.janeg.ca/scjp/threads/synchronization.html (2 of 2) [15/03/2004 8:47:47 AM]

http://www.janeg.ca/scjp/threads/TestReentrant.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - The Runnable Interface
the Runnable interface declares a single method: run()●

you can execute a Runnable object in its own thread by passing it to a Thread constructor●

here's the BasicThread class modified to use the Runnable interface●

class RunBasicThread implements Runnable{
char c;

RunBasicThread(char c) {
 this.c = c;
}

// override run() method in interface
public void run() {
 for(int i=0; i<100; i++) {
 System.out.print(c);

 try{
 Thread.sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {
 System.out.println("Interrupted Exception caught");
 }
 }
}

public static void main(String[] args) {

 RunBasicThread bt = new RunBasicThread('!');
 RunBasicThread bt1 = new RunBasicThread('*');

 // start RunBasicThread objects as threads
 new Thread(bt).start();
 new Thread(bt1).start();
}
}

the most significant code revisions are shown in red●

note that you can still make use of the methods declared in the Thread class but you now
have to use a qualified name ie Thread.sleep() and you have to pass your runnable object to
the thread when it is created ie new Thread(bt).start()

●

the Clock applet is an example of an Applet (based on the Sun Thread tutorial) using the
Runnable interface:

●

When to implement Runnable vs subclassing Thread

Whenever your class has to extend another class, use Runnable. This is particularly true
when using Applets

●

Example Code
Click Applet●

Bouncing Ball applet: UpDown_1●

Java Quick Reference - Threads - The Runnable Interface

http://www.janeg.ca/scjp/threads/runnable.html (1 of 2) [15/03/2004 8:47:48 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/threads/Clock.java
http://www.janeg.ca/scjp/threads/ClickApplet.java
http://www.janeg.ca/scjp/threads/UpDown_1.java

PrimeNumbers applet: Ex1_a●

Java Is Hot: Thread2●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - The Runnable Interface

http://www.janeg.ca/scjp/threads/runnable.html (2 of 2) [15/03/2004 8:47:48 AM]

http://www.janeg.ca/scjp/threads/Ex1_a.java
http://www.janeg.ca/scjp/threads/Thread2.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Thread States
each thread has a life-cycle all it's own●

during it's life-cycle it can exist in a number of states
New❍

Runnable❍

Not Runnable❍

Dead❍

●

Note

These states are those used in the Sun Java Thread tutorial. Other references
may use 'ready', 'waiting' or other terminology to describe the Runnable and
Non-runnable states.

●

New
a new thread is an empty Thread object; no system resources have been allocated as yet.
Calling any thread method other than start() causes an IllegalThreadStateException

Runnable
a thread enters the Runnable state after the start() method is invoked. The start() method
allocates system resources, schedules the thread, and calls the threads's run() method. When
the thread actually runs is determined by the scheduler

Not Runnable
a thread is not runnable when

it's sleep() method is invoked❍

it's wait() method is invoked❍

it is blocked on I/O ie waiting on system resources to perform an input or output
operation

❍

the thread becomes runnable again when a specific condition has been met based on the
action which put it in the not runnable state

when the number of milliseconds called in sleep() have elapsed❍

when the condition it is waiting on has changed and it receives a notify() or notifyAll()
message

❍

when the required system resources are made available and the I/O completes❍

Dead
a thread enters the dead state when it's run() method completes.
an interrupt does not kill a thread
the destroy() method kills a thread dead but does not release any of it's object locks

Life Cycle of a Thread from Sun Thread Tutorial

a thread can bounce between runnable and not runnable states as a result of either●

Java Quick Reference - Threads - Thread States

http://www.janeg.ca/scjp/threads/state.html (1 of 2) [15/03/2004 8:47:50 AM]

mailto:feedback@janeg.ca

scheduling, or1.

programmer control2.

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread States

http://www.janeg.ca/scjp/threads/state.html (2 of 2) [15/03/2004 8:47:50 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Thread Scheduling
execution of multiple threads in some order on a single CPU system is called scheduling●

Java uses fixed-priority scheduling algorithms to decide which thread to execute●

the thread with the highest priority runs first●

if another thread with a higher priority is started, Java makes the lower priority thread wait●

if more than one thread exists with the same priority, Java quickly switches between them in
round-robin fashion BUT only if the operating system uses time-slicing (see below)

●

Priorities

it's possible to assign a thread priority●

the Thread class contains three integer priority constants

[1] MIN_PRIORITY1.

[5] NORM_PRIORITY2.

[10] MAX_PRIORITY3.

●

the default thread priority is NORM_PRIORITY●

when a thread is created, it takes the priority of the thread which created it●

you can check a threads priority using getPriority()●

you can change a threads priority using setPriority()●

if you change the priority on an executing thread to a lesser priority, it may stop executing as
there may be another thread with a higher-priority (BB pg 259)

●

Actual Scheduling depends on the OS

the above act as a guide to scheduling however the actual implementation depends on the
Operating System

●

most operating systems use one of two scheduling methods

Preemptive scheduling1.

Time slicing2.

●

In preemptive scheduling the highest priority thread continues to run until it dies, waits, or
is preempted by a thread of higher priority

●

In time slicing a thread runs for a specific time and then enters the runnable state; at which
point the scheduler decides wether to return to the thread or schedule a different thread
(method used by Win95/NT)

●

DO NOT rely on thread priority as a guarantee that the highest priority thread will always
be running; the operating system has the final say

●

priorities are used as guides to efficiency●

priority manipulations CANNOT be used as a substitute for locking (see synchronization)●

General Conventions for setting priorities (CPJ pg 16)

following represent the general conventions for setting thread priorities based on the type of
activity the thread is involved in

●

 Range Use
 ----- ----------------------------
 10 Crisis management
 7-9 Interactive, event-driven

Java Quick Reference - Threads - Thread Scheduling

http://www.janeg.ca/scjp/threads/scheduling.html (1 of 2) [15/03/2004 8:47:51 AM]

mailto:feedback@janeg.ca

 4-6 IO
 2-3 Background computation
 1 Run only if nothing else can

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread Scheduling

http://www.janeg.ca/scjp/threads/scheduling.html (2 of 2) [15/03/2004 8:47:51 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Ending a Thread
a thread normally ends when it's execution completes●

there are other methods of stopping it, some of which should not be used●

interrupt()

interrupting a thread tells it that you want it to pay attention●

it does not force the thread to halt although it will wake up a sleeping thread●

isInterrupted checks to see if a thread is in an interrupted state●

the static method interrupted can be used to clear a thread's interrupted state●

if a thread is waiting or sleeping and the thread is interrupted, the methods wait() and sleep()
will throw an InterruptedException

●

join()

one thread can wait for another to complete using the join() method●

invoking join() guarantees that the method will not return until the threads run() method has
completed

●

join() will also take a milliseconds argument which will cause it to wait until the thread
completes for the designated time period

●

destroy()

destroy() kills a thread dead without releasing any of it's locks which could leave other
threads blocked forever

●

it's use should be avoided●

stop()

you can force a thread to end by calling stop() which in turn throws the Error ThreadDeath●

you can also throw ThreadDeath yourself●

ThreadDeath SHOULD NOT BE CAUGHT!●

NOTE: stop() is a deprecated method and should not be used!!!●

suspend() and resume()

both methods are deprecated and should not be used!!●

setDaemon(true)

if you want your thread to stop executing when main() completes, set it's daemon status to
true using setDaemon(true)

●

yeild()

Java does not time-slice ie it will not preempt a currently executing thread to allow another
thread of the same priority to run

●

the operating system may use time-slicing but you should not rely on time-slicing when
creating threads

●

a well behaved thread will use the yield() method to voluntarily yield to the CPU, giving it a●

Java Quick Reference - Threads - Ending a Thread

http://www.janeg.ca/scjp/threads/ending.html (1 of 2) [15/03/2004 8:47:51 AM]

mailto:feedback@janeg.ca

chance to run another thread of the same priority.

if no threads of the same priority are available, execution of the yielding thread continues.●

Note: lower priority threads are ignored.●

the yield() method only hints to the JVM that if there are other runnable threads the
scheduler should run one in place of the current thread. The JVM may interpret this hint any
way it likes ie how the yield is handled is dependent on the JVM implementation for the
operating system

●

Also see

Sun Tech Tip: Handling Interrupted Exceptions

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Ending a Thread

http://www.janeg.ca/scjp/threads/ending.html (2 of 2) [15/03/2004 8:47:51 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0425.html#tip2

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Thread Execution

Alive or Dead?

the Thread class includes an isAlive() method which returns true if a thread has been started
and not stopped

●

a thread stops when its run() method finishes executing●

the isAlive() method returns false if the thread is new or dead●

there is no way to detect if a thread is not alive because it was never started or because it is
dead

●

there is also no way to detect if a live thread is Runnable or Not Runnable●

neither can a thread identify which thread started it●

Why a thread might not be executing (BB pg 270)

the thread does not have the highest priority and can't get CPU time
Example: LowPriority

●

the thread has been put to sleep via sleep() method
Example: Sleeping

●

there is more than one thread with the same priority and the JVM is switching between the
threads
Example: SamePriority

●

the thread's wait() method has been invoked
Example: Waiting

●

the thread's yield() method has been invoked
Example: Yielding

●

the suspend() method has been invoked (this is a deprecated method and should no longer be
used)

●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread Execution

http://www.janeg.ca/scjp/threads/execute.html (1 of 2) [15/03/2004 8:47:52 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/threads/LowPriority.java
http://www.janeg.ca/scjp/threads/Sleeping.java
http://www.janeg.ca/scjp/threads/SamePriority.java
http://www.janeg.ca/scjp/threads/Waiting.java
http://www.janeg.ca/scjp/threads/Yielding.java

Java Quick Reference - Threads - Thread Execution

http://www.janeg.ca/scjp/threads/execute.html (2 of 2) [15/03/2004 8:47:52 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Thread Locking Protocols

Note

This information is not required for the Certification exam. I've included it
because I found it useful in helping me to understand how thread locks or
monitors actually worked.

●

each program has an area of main memory where it stores it's classes, arrays and variables●

the main memory has a master copy of every variable and contains one lock for each object●

this main memory area is accessible by all the programs threads●

threads can only communicate thru the shared main memory●

each thread has a working memory where it keeps copies of the values of variables it uses
or assigns

●

to access a shared variable, a thread obtains a lock and flushes its working memory,
guaranteeing the shared value will be loaded from main memory

●

as a thread executes, it operates on its working copies●

when a synchronized block or method is entered, actions by the thread and main memory
must occur in a specific order

the thread obtains a lock on the object and flushes its working copy of the object1.

main memory reads the objects value from it's master copy

the thread loads the value passed by the main memorys read operation1.

the thread uses it's working copy of the object, passing it to it's excuatable
engine

2.

the thread assigns the resulting value back to it's working copy3.

the thread stores the new value, passing it back to main memory4.

2.

main memory writes the value passed by the threads store action back to the master
copy

3.

the thread releases it's lock on the object4.

●

every read action by main memory must be followed by a load action in the thread●

every store action in the thread must be followed by a write action in main memory●

the read and write actions in main must be executed in the order they were performed in the
thread

●

every use action in a thread must be followed by an assign action however an assign does
not necessarily have to be proceeded by a use

●

all use and assign actions must occur in the order dictated by the threads executable code●

assign must follow a load before a store can occur or another load can occur●

every lock action by a thread MUST be paired with an unlock●

as Java allows re-entrant locks, a thread may obtain multiple locks which must be paired
with matching unlocks

●

only one thread at a time can hold a lock on an object●

a thread is not permitted to unlock a lock it doesn't own●

a thread can only release it's lock after it has performed a store●

Special case: double and long variables

double and long variables are handled as two 32-bit variables●

if the variables are not declared volatile and if they are being used by two or more threads the●

Java Quick Reference - Threads - Thread Locking Protocols

http://www.janeg.ca/scjp/threads/locking.html (1 of 2) [15/03/2004 8:47:54 AM]

mailto:feedback@janeg.ca

final result may be a combination of both thread actions

volatile

declaring a thread volatile prevents the compiler from optimizing and in-lining the code;
forcing the thread to reread the value every time the variable is accessed

●

int value = 5;
for(;;) {
 display.showValue(value);
 Thread.sleep(1000); // wait one second
}

in the above example, value is assigned a literal, under normal conditions, if
display.showValue() does not make any changes to value the compiler would in-line the
code, assuming value will not be changed while the method is running

●

however, if you have other threads that can change value then you should declare it as
volatile

●

this will stop the compiler from in-lining the code and force the value to be reread each time
the loop iterates

●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread Locking Protocols

http://www.janeg.ca/scjp/threads/locking.html (2 of 2) [15/03/2004 8:47:54 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - synchronized kewyord
threads often need to share a common resource ie a file, with one thread reading from the file
while another thread writes to the file

●

this is an example of a producer/consumer relationship●

Race conditions

race conditions occur when multiple, asynchronously executing threads access the same
object returning unexpected (wrong) results

●

they can be avoided by synchronizing the methods which access the shared resource●

the Sun Thread tutorial has an example which uses a Producer class, and a Consumer class
which respectively write and read integers from a CubbyHole class. If the CubbyHole class
is unsynchronized, as in the following code:

●

public class CubbyHole {
 private int contents;

 public int get() {
 return contents;
 }

 public synchronized void put(int value) {
 contents = value;
 }
}

Example output from an unsynchronized Producer/Consumer

Consumer #1 got: 0
Producer #1 put: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Producer #1 put: 1
Producer #1 put: 2
Producer #1 put: 3
Producer #1 put: 4
Producer #1 put: 5
Producer #1 put: 6
Producer #1 put: 7
Producer #1 put: 8
Producer #1 put: 9

results are unpredictable; a number may be read before a number has been produced or
multiple numbers may be produced with only one or two being read

●

adding synchronization ensures that a number is first produced, then read in the correct order●

Java Quick Reference - Threads - synchronized keyword

http://www.janeg.ca/scjp/threads/synchronized.html (1 of 3) [15/03/2004 8:47:55 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/threads/Producer.java
http://www.janeg.ca/scjp/threads/Consumer.java
http://www.janeg.ca/scjp/threads/unsync/CubbyHole.java

public class CubbyHole {
 private int contents;
 private boolean available = false;

 public synchronized int get() {
 while (available == false) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 available = false;
 notifyAll();
 return contents;
 }

 public synchronized void put(int value) {
 while (available == true) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notifyAll();
 }
}

the keyword synchronized is added to the method declarations●

the Object methods wait() and notifyAll() are used to communicate between executing
threads

●

Output after code is synchronized

Producer #1 put: 0
Consumer #1 got: 0
Producer #1 put: 1
Consumer #1 got: 1
Producer #1 put: 2
Consumer #1 got: 2
Producer #1 put: 3
Consumer #1 got: 3
Producer #1 put: 4
Consumer #1 got: 4
Producer #1 put: 5
Consumer #1 got: 5
Producer #1 put: 6
Consumer #1 got: 6
Producer #1 put: 7
Consumer #1 got: 7
Producer #1 put: 8
Consumer #1 got: 8
Producer #1 put: 9
Consumer #1 got: 9

Source for synchronized version

Other examples using synchronized

An example of using synchronized methods and object locks Thread3●

Java Quick Reference - Threads - synchronized keyword

http://www.janeg.ca/scjp/threads/synchronized.html (2 of 3) [15/03/2004 8:47:55 AM]

http://www.janeg.ca/scjp/threads/CubbyHole.java
http://www.janeg.ca/scjp/threads/Thread3.java

An example using a synchronized statement on a common object Thread4●

An example of synchronizing access to variables Account●

An example of a museum which uses Walkmen radios for tours: WalkmanHire uses
Museum, Counter, and Visitors classes.

●

Also see

Sun Tech Tip: Using Synchronized Statements
Acquire multiple locks in a fixed, global order to avoid deadlock

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - synchronized keyword

http://www.janeg.ca/scjp/threads/synchronized.html (3 of 3) [15/03/2004 8:47:55 AM]

http://www.janeg.ca/scjp/threads/Thread4.java
http://www.janeg.ca/scjp/threads/Account.java
http://www.janeg.ca/scjp/threads/WalkmanHire.java
http://www.janeg.ca/scjp/threads/Museum.java
http://www.janeg.ca/scjp/threads/Counter.java
http://www.janeg.ca/scjp/threads/Visitors.java
http://developer.java.sun.com/developer/TechTips/1998/tt0915.html#tip1
http://www-4.ibm.com/software/developer/library/praxis/pr52.html?dwzone=java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - wait() method
the wait() method causes a thread to release the lock it is holding on an object; allowing
another thread to run

●

the wait() method is defined in the Object class●

wait() can only be invoked from within synchronized code●

it should always be wrapped in a try block as it throws IOExceptions●

there are actually three wait() methods

wait()1.

wait(long timeout)2.

wait(long timeout, int nanos)3.

●

the timeout is measured in milliseconds●

nanos is measured in nanoseconds●

wait() can only invoked by the thread that own's the lock on the object●

when wait() is called, the thread becomes disabled for scheduling and lies dormant until one
of four things occur:

another thread invokes the notify() method for this object and the scheduler arbitrarily
chooses to run the thread

1.

another thread invokes the notifyAll() method for this object2.

another thread interrupts this thread3.

the specified wait() time elapses4.

●

when one of the above occurs, the thread becomes re-available to the Thread scheduler and
competes for a lock on the object

●

once it regains the lock on the object, everything resumes as if no suspension had occurred●

if the thread was interrupted by another thread, an InterruptedException is thrown BUT not
until after the thread regains it's lock on the object

●

Throws

the wait() method throws three exceptions

IllegalArgumentException - if the timeout value passed is invalid1.

IllegalMonitorStateException - if the current thread does not own the object's lock2.

InterruptedException - if another thread interrupts the current thread. The interrupted
status of the current thread is cleared

3.

●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - wait() method

http://www.janeg.ca/scjp/threads/wait.html (1 of 2) [15/03/2004 8:47:58 AM]

mailto:feedback@janeg.ca

Java Quick Reference - Threads - wait() method

http://www.janeg.ca/scjp/threads/wait.html (2 of 2) [15/03/2004 8:47:58 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - notify() and notifyAll() methods
the notify() and notifyAll() methods are defined in the Object class●

they can only be used within synchronized code●

notify() wakes up a single thread which is waiting on the object's lock●

if there is more than one thread waiting, the choice is arbitrary ie there is no way to specify
which waiting thread should be re-awakened

●

notifyAll() wakes up ALL waiting threads; the scheduler decides which one will run●

if there are no waiting threads, the notifys are forgotten●

only notifications that occur after a thread has moved to wait state will effect it; earlier
notifies are irrelevant

●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - notify() and notifyAll() methods

http://www.janeg.ca/scjp/threads/notify.html (1 of 2) [15/03/2004 8:47:59 AM]

mailto:feedback@janeg.ca

Java Quick Reference - Threads - notify() and notifyAll() methods

http://www.janeg.ca/scjp/threads/notify.html (2 of 2) [15/03/2004 8:47:59 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Threads - Thread mechanics

Wait Sets (CPJ pg 184)

just as every object has a lock it also has a wait set that is manipulated using wait(), notify(),
notifyAll() and Thread.interrupt

●

objects having locks and wait sets are referred to as monitors●

any object can act as a monitor●

each object's wait set is maintained internally by the JVM and holds threads blocked by wait
until a corresponding notify is received or the waits are otherwise released

●

the methods wait(), notify() and notifyAll() can only be invoked when the synchronized
lock is held on their target

●

wait()

the following happens when wait() is invoked

if the current thread has been interrupted, the method exits immeadiately and throws
an InterruptedException; otherwise, the thread is blocked

❍

the JVM places the thread in the wait set associated with the target object❍

the lock for the target is released but all other locks held by the thread are retained. A
full release occurs even if the lock is re-entrantly held due to the thread having nested
synchronized calls

❍

when the thread resumes (ie wait state ends) the lock status is fully restored❍

timed waits()

if a timed wait() has not been notified before it's time is up, it releases automatically❍

there is no way to tell if a wait has returned due to notification or timeout❍

the thread may resume at any arbitrary time after it has timed out based on thread
contention, scheduling and timer granularities

❍

notify()

the following happens when notify() is invoked

the JVM arbitrarily chooses a thread, if one exists, from the target's wait set●

the thread must re-obtain it's synchronized lock on the target object. It will always be
blocked at least until the thread calling notify() releases it's lock or if some other thread
obtains the lock first

●

once the lock is obtained, the thread resumes from the point of it's wait●

notifyAll()

works the same as notify() except all waiting threads are removed from the target wait set
and allowed to compete for the lock

●

only one thread can obtain the lock so they continue one at a time●

Thread.interrupt

if a thread suspended in wait is invoked, the same notify mechanics apply except that after
re-acquiring the lock, an InterruptedException is thrown

●

if an interrupt and notify occur together there is NO guarantee as to which will take●

Java Quick Reference - Threads - Thread mechanics

http://www.janeg.ca/scjp/threads/mechanics.html (1 of 2) [15/03/2004 8:47:59 AM]

mailto:feedback@janeg.ca

precedence

Example Code
Using wait() and notify() to control access to a shared resource Thread5●

Overview Thread Class
Runnable
Interface

Thread States Scheduling
Ending a
Thread

 Execution Synchronization
Locking
Protocols

synchronized
keyword

wait()
notify(),

notifyAll()

Thread

Mechanics

Java Quick Reference - Threads - Thread mechanics

http://www.janeg.ca/scjp/threads/mechanics.html (2 of 2) [15/03/2004 8:47:59 AM]

http://www.janeg.ca/scjp/threads/Thread5.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Encapsulation

objects have both state (details about itself) and behaviour (what it can do)●

a software object maintains information about its state in variables●

what an object can do, its behaviour, is implemented with methods●

in Object-oriented programming (OOPs), an object is encapsulated when its variables and
methods are combined into a single component

●

encapsulation also involves access to an object; its interface●

a tightly encapsulated object hides all it's variables and provides public accessor methods ie
the only way you can use the object is by invoking it's public methods

●

"Hiding data behind methods so that it is inaccessible to other objects is the fundamental basis of
data encapsulation." (JPL pg.12)

encapsulation has two main benefits: (VA pg44)

modularity1.

maintainablity2.

●

Modularity

because the object encapsulates all it's variables and the methods needed to make it work, it
is a self-contained entity that can be maintained independently of other objects

●

Maintainability

because the object hides it's implementation details behind a well-defined interface, the
details can be changed without affecting other parts of the program

●

Example

class TestBook{
 public static void main(String[] args) {
 Book b1 = new Book();
 System.out.println(b1);

// b1.title = "Java Programming Language";
// b1.author = "Ken Arnold and James Gosling";

 // must use accessor methods
 b1.setTitle("The Java Programming Language: Second Edition");
 b1.setAuthor("Ken Arnold and James Gosling");

// System.out.println(b1.title, b1.author);

 System.out.println(" Title: " + b1.getTitle());
 System.out.println("Author: " + b1.getAuthor());
 }
}

In the example code, the instance variables title and author are private; they can only be
accessed by their gettor and settor methods

●

any attempt to directly set or get the variables produces a compile error●

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Encapsulation

http://www.janeg.ca/scjp/overload/encapsulation.html (1 of 2) [15/03/2004 8:48:03 AM]

mailto:feedback@janeg.ca

Example Code
TestBook.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Encapsulation

http://www.janeg.ca/scjp/overload/encapsulation.html (2 of 2) [15/03/2004 8:48:03 AM]

http://www.janeg.ca/scjp/overload/TestBook.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Polymorphism

polymorphism translates from Greek as many forms (poly - many morph - forms)●

in OOP's it refers to
the propensity of objects to react differently to the same method (VA pg 110)

●

method overloading is the primary way polymorphism is implemented in Java●

Overloading methods

overloaded methods:

appear in the same class or a subclass1.

have the same name but,2.

have different parameter lists, and,3.

can have different return types4.

●

an example of an overloaded method is print() in the java.io.PrintStream class●

public void print(boolean b)
public void print(char c)
public void print(char[] s)
public void print(float f)
public void print(double d)
public void print(int i)
public void print(long l)
public void print(Object obj)
public void print(String s)

the actual method called depends on the object being passed to the method●

Java uses late-binding to support polymorphism; which means the decision as to which of
the many methods should be used is deferred until runtime

●

Overriding methods

late-binding also supports overriding●

overriding allows a subclass to re-define a method it inherits from it's superclass●

overriding methods:

appear in subclasses1.

have the same name as a superclass method2.

have the same parameter list as a superclass method3.

have the same return type as as a superclass method4.

the access modifier for the overriding method may not be more restrictive than the
access modifier of the superclass method

if the superclass method is public, the overriding method must be public■

if the superclass method is protected, the overriding method may be protected
or public

■

if the superclass method is package, the overriding method may be packagage,
protected, or public

■

if the superclass methods is private, it is not inherited and overriding is not an
issue

■

5.

●

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Polymorphism

http://www.janeg.ca/scjp/overload/poly.html (1 of 3) [15/03/2004 8:48:04 AM]

mailto:feedback@janeg.ca

the throws clause of the overriding method may only include exceptions that can be
thrown by the superclass method, including it's subclasses

6.

class LBException extends Exception {}
class LBException1 extends LBException {}

In superclass:
 public void testEx() throws LBException {
 throw new LBException();
 }

In subclass:

 public void testEx() throws LBException1 {
 throw new LBException1();
 }

overriding is allowed as LBException1 thrown in the subclass is itself a subclass of the
exception LBException thrown in the superclass method

●

Side effect of late-binding

it is Java's use of late-binding which allows you to declare an object as one type at
compile-time but executes based on the actual type at runtime

●

class LB_1 {

 public String retValue(String s) {
 return "In LB_1 with " + s;
 }

}

class LB_2 extends LB_1 {

 public String retValue(String s) {
 return "In LB_2 with " + s;
 }

}

if you create an LB_2 object and assign it to an LB_1 object reference, it will compile ok●

at runtime, if you invoke the retValue(String s) method on the LB_1 reference, the LB_2
retValue(String s) method is used, not the LB_1 method

●

 LB_2 lb2 = new LB_2();
 LB_1 lb3 = lb2; // compiles ok

 System.out.println(lb3.retValue("Today"));

Output:
 In LB_2 with Today

Example Code
TestLateBinding.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Polymorphism

http://www.janeg.ca/scjp/overload/poly.html (2 of 3) [15/03/2004 8:48:04 AM]

http://www.janeg.ca/scjp/overload/TestLateBinding.java

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Polymorphism

http://www.janeg.ca/scjp/overload/poly.html (3 of 3) [15/03/2004 8:48:04 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - is A vs Has A

is a defines a direct relationship between a superclass and a subclass●

has a identifies a relationship in which one object contains another object (defined by field
variables)

●

Examples

A circle is a shape that has a center point and a radius. (JJ pg 138)●

 public class Circle extends Shape { // a circle is a shape
 Point center; // a circle has a point
 double radius; // a circle has a radius
 }

Define a class hierarchy for the following classes (BB pg14):

An Employee class that maintains an employee number.1.

A Full-time employee class that maintains an employee number, hours worked per
week and calculates it's own pay using a salary() method.

2.

A Retired employee class that maintains an employee number, the number of years
worked, and calculates it's own pay using a salary() method.

3.

●

 public class Employee { // an employee
 long id; // has an id, and
 String status; // a status
 }

 abstract class EmployeeStatus extends Employee {
 abstract double salary();
 }

 // fulltime is a status
 class FullTime extends EmployeeStatus {
 double hrs;
 double salary(){
 return hrs * 60.0;
 }
 }

 // retired is a status
 class Retired extends EmployeeStatus {
 int years;
 double salary() {
 return 0;
 }
 }

Create classes for 2DShape, Circle, Square and Point. Points have an (x,y) location. Circles
have an (x,y) location and a radius. Squares have an (x,y) location and a length. (BB pg17)

●

 class Point { // a point
 int x; // has an x-location, and
 int y; // a y-location

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - is A vs Has A

http://www.janeg.ca/scjp/overload/isAhasA.html (1 of 2) [15/03/2004 8:48:05 AM]

mailto:feedback@janeg.ca

 }

 class 2DShape { // all 2DShapes
 Point p; // have a point
 }

 class Circle extends 2DShape { // a circle is a 2DShape
 double radius; // and has a radius
 }

 class Square extends 2DShape { // a circle is a 2DShape
 double length; // and has length
 }

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - is A vs Has A

http://www.janeg.ca/scjp/overload/isAhasA.html (2 of 2) [15/03/2004 8:48:05 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Overloading Methods

overloaded methods can have the same name but must have different parameter lists●

parameter lists are considered different if the order of the arguments are different●

a subclass method can overload a superclass method●

Examples (based on BB pg 194-5)

the following code shows the method test(int i, long j) in a Super class, and method test(long
j, int i) in a Sub class

●

Super class:
 test(int i, long j);

Sub class
 test(long j, int i);

this code will compile fine if any variables passed to the methods are easily recognizable as
either an int or a long

●

 Sub sb = new Sub();
 // second arg is defined as L(ong); no ambiguity
 sb.test(100, 3000L);

Output:
 uses test(int i, long j) in Super class

however, if the compiler cannot differentiate between a long and an int a compiler error will
occur

●

 Sub sb = new Sub();
 // causes compile-error, 3000 can also be an int
 sb.test(100, 3000);

Ouput:
 compile-error: reference to test() is ambiguous

!!! Warning !!!

When analyzing code, watch for ambiguous references that can cause compile
errors.

●

Overloading constructors

you can overload constructors within the same class●

 class SuperCtor {
 SuperCtor(){}
 SuperCtor(int i) {} // compiles ok
 }

you can't overload them in subclasses as they must have the same name as the class (ie they
would have to have the superclass name and would therefore not be constructors in the
subclass)

●

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Overloading Methods

http://www.janeg.ca/scjp/overload/overloadingMethods.html (1 of 2) [15/03/2004 8:48:05 AM]

mailto:feedback@janeg.ca

 class SuperCtor {
 SuperCtor(){}
 }

 class SubCtor() {
 SuperCtor(){} // compile-error
 }

Also see

Polymorphism●

Sun Tech Tip: Overload Resolution●

Example Code
TestOverload.java●

TestOverloadCtor.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Overloading Methods

http://www.janeg.ca/scjp/overload/overloadingMethods.html (2 of 2) [15/03/2004 8:48:05 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0314.html#tip2
http://www.janeg.ca/scjp/overload/TestOverload.java
http://www.janeg.ca/scjp/overload/TestOverloadCtor.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Overriding Methods

fields cannot be overridden but they can be hidden ie if you declare a field in a subclass with
the same name as one in the superclass, the superclass field can only be accessed using super
or the superclasses type

●

a subclass can override methods in it's superclass and change it's implementation●

it must have the same return type, name, and parameter list and can only throw
exceptions of the same class/subclass as those declared in the original method

●

class Super {
 void test() {
 System.out.println("In Super.test()");
 }
}

class Sub extends Super {
 void test() { // overrides test() in Super
 System.out.println("In Sub.test()");
 }
}

cannot have weaker access rights than the original method●

In Sub class:
 // compile-error, original has package access
 private void test() {}
 protected void test() {} // compiles ok
 public void test() {} // compiles ok

you can have multiple overloaded methods in a class but only one overriding method●

In Sub class:
 void test() {} // overrides test() in Super
 public void test() {} // compile-error: test() already declared
 // different access modifiers not part of
 // method signature for naming purposes
 void test(String str) {}// compiles ok, overloads test()

Only accessible non-static methods can be overridden●

static methods can be hidden ie you can declare a static method in the subclass with the
same signature as a static method in the superclass. The superclass method will not be
accessible from a subclass reference

●

any class can override methods from its superclass to declare them abstract, turning a
concrete method into an abstract one at that point in the type tree. Useful when a class's
default implementation is invalid for part of the class hierarchy (JPL pg 77)

●

Overriding with constructors

you cannot override a constructor in a superclass as they are not inherited●

you cannot override a constructor in the same class as they would both have the same
signatures; get an 'already declared' compile-error

●

if you're instantiating a Subclass object and if the Superclass constructor calls a method that
is overridden in the Subclass, the Subclass method will called from the superclass

●

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Overriding Methods

http://www.janeg.ca/scjp/overload/overridingMethods.html (1 of 2) [15/03/2004 8:48:07 AM]

mailto:feedback@janeg.ca

constructor -- NOT the one in the superclass

class Super {
 Super(){
 System.out.println("In Super constructor");
 test();
 }

 void test() {
 System.out.println("In Super.test()");
 }
}

class Sub extends Super {
 Sub() {
 System.out.println("In Sub constructor");
 }

 void test() { // overrides test() in Super
 System.out.println("In Sub.test()");
 }
}

Output if Sub sb = new Sub() is invoked:
 In Super Constructor
 In Sub.test()
 In Sub Constructor

Also see

Polymorphism●

Example Code
TestOverride.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Overriding Methods

http://www.janeg.ca/scjp/overload/overridingMethods.html (2 of 2) [15/03/2004 8:48:07 AM]

http://www.janeg.ca/scjp/overload/TestOverride.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Field Variables

consider the following scenario:

Super has a field 'i' and a method test() which displays 'i'1.

Sub is a subclass of Super with it's own field 'i' and method test()2.

Super calls the test() method in it's constructor3.

●

Which value for 'i' will be displayed when a Sub object is instantiated?●

Answer: the default value of the field 'i' in Sub●

the subclass object is instantiated as follows:●

 the Superclass constructor is called
 the Subclass method test() is used
 as the Subclass has not been fully initialized,
 the default value of it's field variable is displayed
 the Subclass variables are initialized
 the Subclass constructor is called

When an overridden method is called from a superclass constructor both the Subclass
method and field variables are used

●

Which methods and variables are used when an object reference for a Superclass is created
and the assigned object is a Subclass type?

●

Answer: both the Subclass methods and variables are used. The declared type is only valid at
compile-time. The actual object type is used at runtime.

●

BUT●

if you access the field variable directly, ie not through a method, the variable for the
declared type is returned.

●

Creating a Super objref and pointing it to Sub obj
 // subclass obj stored in super reference
 Super sp1 = sb;

 // field variable in Sub object
 test() in Sub uses i: 20.0

 // field variable in Super object
 sp1.i 10

Example Code
TestFields.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Field Variables

http://www.janeg.ca/scjp/overload/fields.html [15/03/2004 8:48:07 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/overload/TestFields.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Initialization

Steps that occur when a new instance is created (JLS§12.5)

memory is allocated for all the instance variables in the class and instance variables in all of
it's superclasses

1.

the instance variables are set to their default values2.

the constructor used in the creation expression is called according to the following:

arguments for the constructor are assigned to newly created parameter variables1.

if the constructor begins with this(); invoke the constructor recursively following the
same five steps

2.

if the constructor does not begin with this(), then invoke, explicitly or implicitly, the
corresponding superclass constructor using super(). These are processed recursively
following the same 5 steps.

3.

execute the instance initializers and instance variables for this class4.

execute the remainder of the constructor body5.

3.

 Example:

 class Point {
 int x, y;
 Point() { x = 1; y = 1; }
 }

 class ColoredPoint extends Point {
 int color = 0xFF00FF;
 }
 class Test {
 public static void main(String[] args) {
 ColoredPoint cp = new ColoredPoint();
 System.out.println(cp.color);
 }
 }

 When the new instance of ColoredPoint is created:
 1. first memory is allocated for the fields 'color' in
 ColoredPoint and then for the fields 'x, y' in Point
 2. the fields are initialized to their default values
 3. the no-arg ColoredPoint constructor is invoked.
 As none exists, the superclasses no-arg constructor
 is invoked. This is done implicitly ie the compiler
 added the default no-arg ctor at compile time
 4. the Point ctor does not begin with this() so an
 invocation is made to the no-arg ctor for Object
 (Point's superclass)
 5. any instance variable initializers of Object are
 invoked and the body of the no-arg ctor is executed
 6. next, all the instance initializers for Point's instance
 variables are invoked and the body of the Point
 constructor is executed.
 7. initializer for instance variables of ColoredPoint

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Initialization

http://www.janeg.ca/scjp/overload/initialization.html (1 of 3) [15/03/2004 8:48:08 AM]

mailto:feedback@janeg.ca

 are invoked and the body of the ctor is executed.

JLS §12.4.1

before a class is initialized it's direct superclass must be initialized but interfaces
implemented by the class need not be initialized

●

a reference to a class field only causes the initialization of it's class even if it is referred to by
a subclass ie if 'taxi' is a static field in 'Super' class and is referenced by 'Sub.taxi'; only
'Super' is initialized; not 'Sub'

●

the initialization of an Interface does not implicitly cause initialization of it's SuperInterfaces●

JLS §8.8.5.1

a constructor beginning with this() or super() can not use any class or superclass instance
variables as an argument to a parameter

●

No argument constructor

ONLY the no-arg constructor is called implicitly when new instances are created●

New ClassB instance // extends ClassA, has no ctor
 ClassA() ctor

New ClassD instance // extends ClassA, has a no-arg ctor
 ClassA() ctor
 ClassD() ctor

New ClassF instance with no-args // ClassF extends ClassE
 // which extends ClassA
 ClassA() ctor
 ClassE() ctor
 ClassF() ctor

// invoked with different ctor
New ClassF instance with parameter
 ClassA() ctor // no-arg ctor's of superclasses implicitly
 ClassE() ctor // called
 ClassF(String name) ctor

if the constructor being invoked explicitly calls a superclass constructor then the superclass
no-arg constructor is not implicitly invoked

●

ClassC extends ClassB which extends ClassA

// (no call to super(str) in ClassC(String str))
New ClassC instance created
 ClassA() ctor // implicitly called
 ClassB() ctor // implicitly called
 Hello

// (ClassC(String str) explicitly calls super(str))
New ClassC instance created
 ClassA() ctor // implicitly called
 In ClassB // explicit call;
 // NO implicit call to ClassB()
 Hello

!!! Remember !!!

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Initialization

http://www.janeg.ca/scjp/overload/initialization.html (2 of 3) [15/03/2004 8:48:08 AM]

If NO constructor exists, the compiler will add a default no-arg constructor1.

The no-arg constructor of all superclasses in the hierarchy will be invoked and
executed BEFORE the type constructor is executed UNLESS the type
constructor explicitly calls another superclass constructor

2.

There are NO IMPLICIT invocations to any other constructors3.

Also see

Sun Tech Tip: Constructor and Initialization Ordering

Example Code
TestCtor.java●

TestCtor_1.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Initialization

http://www.janeg.ca/scjp/overload/initialization.html (3 of 3) [15/03/2004 8:48:08 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt1205.html#tip2
http://www.janeg.ca/scjp/overload/TestCtor.java
http://www.janeg.ca/scjp/overload/TestCtor_1.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Top-level Classes

a top-level class can be declared public, final or abstract●

or it can have no access modifier which defaults to package or friendly access●

 public class TestTopLevel {}
 final class FinalClass {}
 abstract class AbstractClass {}
 class PackageClass {}

you can have more than one top-level class in a source code file; however, you can have only
one public class in a source code file

●

Example Code
TestTopLevel.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Top-level Classes

http://www.janeg.ca/scjp/overload/top.html [15/03/2004 8:48:09 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/overload/TestTopLevel.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Inner Classes

Inner classes are non-static classes defined within other classes (JLS§8.1.2)●

 class Outer {
 class Inner {} // class definition within the
 // the body of class Outer
 }

the compiled class files for the above are: Outer.class and Outer$Inner.class●

the Inner class type is: Outer.Inner●

instances of inner classes can be created in a number of ways●

Create an Outer class object:
 Outer o1 = new Outer();

Then create an Inner class object:
 Outer.Inner i1 = o1.new Inner();

Or, create the inner class directly:
 Outer.Inner i2 = new Outer().new Inner();

Or, create one from within the outer class constructor
 class Outer {
 Outer() {
 new Inner();
 }
 }

inner classes may have no declared access modifier, defaulting the class access to package●

or, inner classes may be declared public, protected, private, abstract, static or final●

class Outer {
 public class PublicInner{}
 protected class ProtectedInner {}
 private class PrivateInner{}
 abstract class AbstractInner {}
 final class FinalInner {}
 static class StaticInner {}
}

each instance of a non-static inner class is associated with an instance of their outer class●

static inner classes are a special case. See Static Inner Classes●

inner classes may not declare static initializers or static members unless they are compile
time constants ie static final var = value; (JLS§8.1.2)

●

you cannot declare an interface as a member of an inner class; interfaces are never inner
(JLS§8.1.2)

●

inner classes may inherit static members (JLS§8.1.2)●

the inner class can access the variables and methods declared in the outer class●

to refer to a field or method in the outer class instance from within the inner class, use
Outer.this.fldname

●

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Inner Classes

http://www.janeg.ca/scjp/overload/inner.html (1 of 2) [15/03/2004 8:48:11 AM]

mailto:feedback@janeg.ca

Example Code
TestInner.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Inner Classes

http://www.janeg.ca/scjp/overload/inner.html (2 of 2) [15/03/2004 8:48:11 AM]

http://www.janeg.ca/scjp/overload/TestInner.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Static Nested Classes

a static inner class behaves like any top-level class except that its name and accessibility are
defined by its enclosing class (JPL pg 50) ie use new Outer.Inner() when calling from
another class

●

formally called top-level nested classes (JPL pg 50)●

Note

There is alot of confusion over the terminology involving 'static nested classes'. They
are not inner classes!

While the formal name, as stated in the Java Programming Language, Second Edition
by Ken Arnold and James Gosling, is 'top-level nested', it is a bit of an oxymoron.

Joshua Bloch, author of Effective Java, prefers the term 'static member class' which
provides a clearer sense of how such classes are utilized.

class Outer {
 public static void main(String[] args) {
 int x = Inner.value;
 }

 static class Inner {
 static int value = 100;
 }
}

they are not associated with an instance of their outer class ie you can create an Inner class
object from within the Outer class using new Inner(); you do not need to create an Outer
class object first as is required with non-static inner classes

●

static inner classes can directly access static fields of the outer class but must use an instance
of the outer class to access the outer classes instance fields

●

Example Code
TestStaticInnerClass.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Static Nested Classes

http://www.janeg.ca/scjp/overload/static.html [15/03/2004 8:48:11 AM]

mailto:feedback@janeg.ca
http://www.amazon.com/exec/obidos/ASIN/0201310082/electrickporkchop
http://www.amazon.com/exec/obidos/ASIN/0201310058/electricporkchop
http://www.janeg.ca/scjp/overload/TestStaticInnerClass.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Local Classes

may be declared within a block of code●

 class Outer {
 void display() {
 class Local {
 // body of Local class
 }
 }
 }

the compiled name of the above Local class is: Outer1Local.class●

local inner classes are not class members and are not tied to an instance of the enclosing
class

●

as they are not class members, they cannot be instantiated outside of the code block in which
they are declared by using the class as a reference ie new Outer.new Local(); won't work

●

they may not be declared private, public, protected, or static. May be declared final●

they may access static and non-static members of the enclosing class●

they may only access final variables or parameters of the enclosing code block●

Example Code
TestLocalInner.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Local Classes

http://www.janeg.ca/scjp/overload/local.html [15/03/2004 8:48:12 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/overload/TestLocalInner.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Overloading, Overriding, Runtime Types and
Object Orientation - Anonymous Classes

anonymous classes are classes which have no name●

they are declared and defined using the name of the class or interface they extend ie new
Enumeration()

●

no modifiers, extends or implements are allowed●

if any parameters are passed the superclass must have a corresponding constructor●

Anonymous classes do not have constructors of their own as constructors always take the
name of the class and Anonymous classes have no name

●

even though you cannot use an extends clause, you can extend the superclass by overriding
methods

you cannot 'overload' or 'add' new methods. See example code

●

Once you create an anonymous class and override a method, that method is used until the
class is unloaded

●

they are most often used to implement an event listener interface or extend an adapter class●

Example Code
TestAnonymous.java●

TestAnonymousClass.java●

Encapsulation Polymorphism isA/hasA Overloading Overriding
Field

Variables

Initialization
Top-level
Classes

Inner Classes
Static Nested

Classes
Local Classes

Anonymous
Classes

Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Anonymous Classes

http://www.janeg.ca/scjp/overload/anonymous.html [15/03/2004 8:48:13 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/overload/TestAnonymous.java
http://www.janeg.ca/scjp/overload/TestAnonymous.java
http://www.janeg.ca/scjp/overload/TestAnonymousClass.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Garbage Collection Certification - Behaviour
the Java garbage collector consists of three basic activities:

monitors program objects to determine when they are no longer required1.

informs selected objects that they should release any non-memory resources2.

destroys objects and reclaims their memory resources3.

●

the gc operates as a seperate asynchronous background thread that tracks all program objects●

an object ceases to be needed by a program when it is no longer reachable●

an object is reachable if a reference to the object exists in any variables of any executing
code

●

an object is subject to garbage collection when it can no longer be reached but it is not
necessarily garbage collected immeadiately

●

there are no guarantees as to when the gc will reclaim an object or the order in which objects
are reclaimed

●

there is no way to tell if and when an object will be collected, you can only tell when an
object becomes eligible for garbage collection

●

you can request garbage collection by calling one of●

 Runtime.getRuntime().gc() // no guarantee gc will run
 System.gc() // no guarantee gc will run

you can also request that the finalize() method be run for objects deemed eligible for
collection but which have not yet had their finalization code run

●

 Runtime.runFinalization()
 System.runFinalization()

Also see

Garbage Collection in Java●

Sun Tech Tip: Reference Objects●

Sun Tech Tip: Performance tip: Garbage Collection and setting to null●

Traps
a question that targets a specific object for garbage collection (can't be done)●

a question that presumes to force the gc to run (can only suggest it run)●

Behaviour Eligibility finalize()

Java Quick Reference - Garbage Collection - Behaviour

http://www.janeg.ca/scjp/gc/behaviour.html [15/03/2004 8:48:15 AM]

mailto:feedback@janeg.ca
http://www.artima.com/insidejvm/ed2/ch09GarbageCollectionPrint.html
http://developer.java.sun.com/developer/TechTips/1999/tt0511.html#tip2
http://developer.java.sun.com/developer/TechTips/1997/tt0903.html#tip2

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Garbage Collection Certification - Eligibility
variables and objects are eligible for garbage collection when they become unreachable●

following summarizes the normal duration of a declared object or variable●

Declaration Duration
static field as long as the class is loaded
instance field for the life of the instance
Array components as long as the array is referenced
Method parameters until method execution ends
Constructor parameters until the constructor execution ends
Exception handling
parameters

until the catch clause completes execution

Local variables in a for-loop, until the loop completes
in a code-block, until the code block completes

any variable set to null automatically becomes eligible for garbage collection●

gc and the String pool

You may run across mock exam questions or discussions that state Strings created as
part of the String pool are never garbage collected. This may well be true as garbage
collection is implementation dependent.

The certification exam will not contain questions that rely on specific implementations
of any JVM; for exam purposes it is unlikely you will see any gc questions involving
pooled Strings. Just remember once an Object reference has been set to null it is
eligible for garbage collection.

Behaviour Eligibility finalize()

Java Quick Reference - Garbage Collection - Eligibility

http://www.janeg.ca/scjp/gc/eligible.html [15/03/2004 8:48:15 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Garbage Collection Certification - finalize()

Syntax (JDK 1.3)

 protected void finalize() throws Throwable {}

every class inherits the finalize() method from java.lang.Object●

the method is called by the garbage collector when it determines no more references to the
object exist

●

the Object finalize method performs no actions but it may be overridden by any class●

normally it should be overridden to clean-up non-Java resources ie closing a file●

if overridding finalize() it is good programming practice to use a try-catch-finally statement
and to always call super.finalize() (JPL pg 47-48). This is a saftey measure to ensure you do
not inadvertently miss closing a resource used by the objects calling class

●

protected void finalize() throws Throwable {
 try {
 close(); // close open files
 } finally {
 super.finalize();
 }
}

any exception thrown by finalize() during garbage collection halts the finalization but is
otherwise ignored

●

finalize() is never run more than once on any object●

Also see

Object finalization and cleanup - JavaWorld, June 1998●

Sun Tech Tip: Using finally versus finalize to guarantee quick resource cleanup●

Example Code
TestGC.java●

Behaviour Eligibility finalize()

Java Quick Reference - Garbage Collection - finalize()

http://www.janeg.ca/scjp/gc/finalize.html [15/03/2004 8:48:16 AM]

mailto:feedback@janeg.ca
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-techniques_p.html
http://developer.java.sun.com/developer/TechTips/2000/tt0124.html#tip1
http://www.janeg.ca/scjp/gc/TestGC.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Declarations and Access Control - Access
Modifiers

Modifier Used with Description
public Classes

Interfaces
Constructors
Inner Classes
Methods
Field variables

A Class or Interface may be accessed from outside its
package.
Constructors, Inner Classes, Methods and Field variables
may be accessed from wherever their class is accessed.

protected Constructors
Inner Classes
Methods
Field variables

May be accessed by other classes in the same package or
from any subclasses of the class in which they are declared.

private Constructors
Inner Classes
Methods
Field variables

May be accessed only from within the class in which they are
declared.

no modifier Classes
Interfaces
Constructors
Inner Classes
Methods
Field variables

May only be accessed from within the package in which they
are declared.

Access
Modifiers

Special
Modifiers

this and super Scope Inheritance
Access
Control

Java Quick Reference - Declarations and Access Control - Access Modifiers

http://www.janeg.ca/scjp/declarations/access.html [15/03/2004 8:48:17 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Declarations and Access Control - Special
Modifiers

Modifier Used with Description
abstract Classes

Interfaces
Methods

Declares a Class or Method that is incomplete.
All Interfaces are implicitly abstract so the modifier is
redundant.
A Class which has an abstract Method must be declared
abstract.

final Classes
Field variables
Methods
Method
parameters
Local variables

Indicates a definition is complete and cannot be changed.
Classes may not be extended.
Field variables may not be modified once a value is assigned.
Methods cannot be overridden.
Required for Method parameters and Local variables if they
are to be used by an Inner Class.
Note: A Class may not be both final and abstract.

native Methods Indicates a platform-specific method written in another
language.
Note: a method cannot be both native and abstract

static Initializers
Methods
Variables

Indicates an initializer, method or variable belongs to a class
vs an instance (object) of the class.
Static initializers are processed once, when the class is
loaded.
Static methods are used to access static variables. They may
not be used to access non-static variables unless they specify
an instance of the class.

synchronized Methods Indicates a method acquires a lock on an object before it
executes.
Used to control access to objects shared by multiple threads.

transient Variables Indicates the variable is not part of the permanent state of an
object and may not be serialized (written to a stream).

volatile Variables Indicates a variable may be changed by more than one thread.
Each thread has it's own copy of a working variable. Volatile
ensures the variable is compared to the master copy each
time it is accessed.

Access
Modifiers

Special
Modifiers

this and super Scope Inheritance
Access
Control

Java Quick Reference - Declarations and Access Control - Special Modifiers

http://www.janeg.ca/scjp/declarations/special.html [15/03/2004 8:48:17 AM]

mailto:feedback@janeg.ca

Declarations and Access Control - this and super

this (JLS §15.8.3)

this is an Object-Oriented Programming (OOP) operator●

it is used to refer to the current instance of an object●

it can be used in the body of a class constructor to refer to the object being created●

it can be used in the body of an instance method or initializer to refer to the object whose method is being executed●

it cannot be used in a static method or initializer●

most commonly appears in constructors●

can be used to explicitly call another constructor●

when used in a constructor it must be the first statment in the constructors body●

class Super {

 int x;

 int y;

 Super(){

 System.out.println("Super object being created.");

 }

 Super(int x, int y) {

 this(); // call no-arg constructor

 this.x = x;

 this.y = y;

 }

}

super

super is an Object-Oriented Programming (OOP) operator●

used to call a constructor declared in a classes superclass●

commonly used in constructors and to access hidden fields or invoke overridden methods in the superclass●

if used in a constructor, must be the first statment in constructor body●

Remember
Constructors are not inherited!●

class Subclass extends Super {

 int w;

 Subclass(){

 this(0,0,0); // call 3-param constructor

 }

 Subclass(int x, int y) {

 this(x,y,0); // call 3-param constructor

Java Quick Reference - Declarations and Access Control - this and super

http://www.janeg.ca/scjp/declarations/this.html (1 of 3) [15/03/2004 8:48:18 AM]

 }

 Subclass(int x, int y, int w) {

 super(x,y); // call superclass constructor

 this.w = w;

 }

}

Remember
You cannot use this() and super() in the same constructor.●

 Subclass(int x, int y, int w) {

 this();

 super(x,y); // compile-error

 }

Example Code
TestThisAndSuper.java●

TestThisAndSuper.java

class TestThisAndSuper {

 public static void main(String[] args) {

 Super sup = new Super(10,15);

 System.out.println("Super x: " + sup.x + " y: " + sup.y);

 Subclass sub = new Subclass(20,25,30);

 System.out.println("Sub x: " + sub.x + " y: " + sub.y + " w: " + sub.w);

 }

}

class Super {

 int x;

 int y;

 Super(){

 System.out.println("Super object being created.");

 }

 Super(int x, int y) {

 this(); // call no-arg constructor

 this.x = x;

 this.y = y;

 }

}

Java Quick Reference - Declarations and Access Control - this and super

http://www.janeg.ca/scjp/declarations/this.html (2 of 3) [15/03/2004 8:48:18 AM]

http://www.janeg.ca/scjp/declarations/TestThisAndSuper.java

class Subclass extends Super {

 int w;

 Subclass(){

 this(0,0,0); // call 3-param constructor

 }

 Subclass(int x, int y) {

 this(x,y,0); // call 3-param constructor

 }

 Subclass(int x, int y, int w) {

 super(x,y); // call superclass constructor

 this.w = w;

 }

}

TestThisAndSuper.java

Java Quick Reference - Declarations and Access Control - this and super

http://www.janeg.ca/scjp/declarations/this.html (3 of 3) [15/03/2004 8:48:18 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Declarations and Access Control - Scope
names are used to identify entities declared in a program ie classes, methods, variables,
parameters, etc

●

each name or identifier occupies a particular namespace●

every declaration has a scope; the areas of a program from which it can be accessed by its
simple name

●

Declaration Scope (accessible from)
package all compilation units within the package
import all the classes and interfaces within the compilation unit (source code

file)
class or interface all other declarations within the same file
label the statements immeadiately enclosed by the labeled statement ie if a

loop is labelled, everything declared within the loop-construct has
access to the label

member the body of the class and anything declared within the class
parameter the body of the method or constructor
local variable the code block in which the declaration occurs
local class the enclosing block including the local class body
local variable in a
for-loop initializer

the body of the for-loop

parameter in a catch
clause

the body of the catch clause

Order of searching for an identifier (JPL pg 113 and JLS §6.5)

when a name (identifier) is used; the meaning, or scope, of it's name is searched for based on
where it appears in the code starting with:

●

if used in a code block, for-loop, or in a catch clause, search is for a local variable within the
enclosing construct

1.

if in a method or constructor, searches for a matching parameter2.

search continues for a class or interface member, including inherited members3.

if its a nested type, searches enclosing block or class. If its a static type, only static members
of enclosing blocks or classes are searched.

4.

explicitly named imported types5.

other types declared in the same package6.

implicitly named imported types7.

packages on the host system8.

Shadowing (JLS §6.3.1)

Because of the way identifiers are looked up; shadowing declarations can occur●

For example, a field declaration can be shadowed by a local variable declaration●

class TestShadowing {
 static int x = 1; // field variable

 public static void main(String[] args) {
 int x = 0; // local variable

Java Quick Reference - Declarations and Access Control - Scope

http://www.janeg.ca/scjp/declarations/scope.html (1 of 3) [15/03/2004 8:48:19 AM]

mailto:feedback@janeg.ca

 System.out.println("x = " + x);
 System.out.println("TestShadowing.x = " + TestShadowing.x)
 }
}

Output:
 x = 0
 TestShadowing.x = 1

because the identifier x is used within a code block main() a search is made for a declaration
of x within the body of main(). As one is found, int x = 0, the simple identifier name x is
assumed to be within scope as a local variable

●

to access the field variable x, you must use its fully-qualified name TestShadowing.x●

Note

it was not necessary to instantiate an instance of the TestShadowing object to
access the static field variable. If x had been an instance variable it would have
been necessary to create a new instance of TestShadowing and use it's reference
to access x

●

Hiding

Shadowing is not the same as hiding●

hiding applies to members that would normally be inherited but are not because of a
declaration of the same identifier in a subclass (JLS § 6.1.3)

●

class SuperA {
 int x = 10;
}

class SubA extends SuperA {
 int x = 20; // hides x in superclass
}

a method can hide a method in the superclass by overriding it●

static Methods cannot be overridden

a method cannot override a static method in the superclass; however, it can hide
it by using the same declaration

●

class SuperA {
 static void method2() {
 }
}

class SubA extends SuperA() {
 void method2() {
 // declaration causes a compile-error
 }

 static void method2() {
 // compiles ok
 }
}

static methods are hidden vs overridden as the JLS states they "cannot be
overridden" so the compiler never compares subclass method declarations to
static superclass method declarations.

●

a static method in a subclass cannot hide an instance method in the superclass
(JLS §8.4.6.2)

●

Java Quick Reference - Declarations and Access Control - Scope

http://www.janeg.ca/scjp/declarations/scope.html (2 of 3) [15/03/2004 8:48:19 AM]

class SuperA {
 void method1() {
 }
}

class SubA extends SuperA() {

 static void method1() {
 // compile-error
 }
}

a hidden method can be accessed by using super(), casting to the superclass or using the
methods fully qualified name (JLS §8.4.6.2)

●

 ((SuperA)y).method2(); // cast to access hidden method

instance variables can hide static and non-static variables in the superclass (JLS §8.4.6.1)●

Obscuring (JLS §6.3.2)

there may be times when a simple name could be interpreted as a variable, a type or a
package

●

based on the rules, a variable will be chosen before a type, and a type before a package●

in such situations a declaration is said to be obscured●

following naming conventions helps to avoid obscuring (see Naming conventions).●

Also See

Tech Tip on Sun Site re: Shadowing, hiding, etc

Example Code
TestShadowing.java●

TestHiding.java●

Access
Modifiers

Special
Modifiers

this and super Scope Inheritance
Access
Control

Java Quick Reference - Declarations and Access Control - Scope

http://www.janeg.ca/scjp/declarations/scope.html (3 of 3) [15/03/2004 8:48:19 AM]

http://www.janeg.ca/scjp/lang/variables.html
http://developer.java.sun.com/developer/TechTips/2000/tt1010.html#tip2
http://www.janeg.ca/scjp/declarations/TestShadowing.java
http://www.janeg.ca/scjp/declarations/TestHiding.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Declarations and Access Control - Inheritance

Package members (JLS §6.4.1)

package members include all subpackages, and all top-level class and interface types
declared in the package source files

●

subpackages are determined by the host system.●

the java package always includes the subpackages lang and io and may include others●

no two distinct members of a package may have the same simple name●

Class and Interface members (JLS §6.4.2 & §6.4.3)

class members are fields, methods, classes or interfaces declared within the body of the class
or inherited by the class

●

constructors are not members●

a field or method can have the same simple name●

a member class or interface can have the same name as a field or method●

a class can have two different field variables with the same simple name if they are declared
in different interfaces and are inherited but they can only be accessed using their
fully-qualified names (compile-error: ambiguous results if simple names are used)

●

a class can have two or more methods with the same simple-name if their signatures are
different (overloading)

●

a class may have a method with the same simple-name and signature as an inherited method.
The original method is not inherited and the new member is said to implement it, if the
original was abstract or override it

●

Array members (JLS §6.4.4)

the public final field length which contains the number of components in the array (may be
zero or any positive number)

●

the public method clone which overrides the method clone in Object and throws no checked
exceptions

●

all members inherited from class Object●

Access
Modifiers

Special
Modifiers

this and super Scope Inheritance
Access
Control

Java Quick Reference - Declarations and Access Control - Inheritance

http://www.janeg.ca/scjp/declarations/inheritance.html [15/03/2004 8:48:20 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Declarations and Access Control - Access
Control

accessibility is a static that can be determined at compile time●

it depends only on types and declaration modifiers●

accessibility effects inheritance of class members including hiding and overriding●

Determining accessibility (JLS §6.6.1)

a package is always accessible1.

a public class or interface is accessible from any code as long as it's compilation unit is
reachable by the code

2.

an array is accessible if and only if it's element type is accessible3.

a member of a reference type (ie a class, interface, field or method of an object reference) or
a class constructor is accessible only if the member was declared to allow access

declared public, all code can access the member❍

declared protected, accessible from other code within the same package or from
subclasses in other packages if the outside code is involved in the implementation of
the class. For example, the following produces a compile-error

❍

4.

package point;

class Point {
 protected int x, y;
}

package threepoint;
import point.Point;

class ThreePoints extends Point {
 protected int z;

 public void delta(Point p) {
 p.x += this.x; // compile-error: cannot access p.x
 p.y += this.y; // compile-error: cannot access p.y
 }
}

Even though ThreePoints is a subclass of Point, it cannot
access the protected fields in Point. The subclass must be
involved in the implementation of Point. The fact that the
code is within the body of a subclass is irrelevant. To the
compiler, Point is a type reference and p.x and p.y are
declared protected in the type Point.

If the parameter is changed to ThreePoints p the code will
compile as the type ThreePoints inherits the protected fields
x and y from Point.

declared private, accessible only from within the body of the enclosing class; private
members are not inherited

●

Java Quick Reference - Declarations and Access Control - Access Control

http://www.janeg.ca/scjp/declarations/control.html (1 of 2) [15/03/2004 8:48:20 AM]

mailto:feedback@janeg.ca

class Private1 {

 private boolean state;

 Private1() {
 System.out.println("Private1 state: " + state);
 }

}

class Private2 extends Private1 {

 Private2() {
 // compile-error
 System.out.println("Private1 state: " + state);
 }
}

if no access was declared, default access applies ie accesible only from code within the same
package

●

Example Code
Point.java●

ThreePoint.java●

TestPrivateAccess.java●

Access
Modifiers

Special
Modifiers

this and super Scope Inheritance
Access
Control

Java Quick Reference - Declarations and Access Control - Access Control

http://www.janeg.ca/scjp/declarations/control.html (2 of 2) [15/03/2004 8:48:20 AM]

http://www.janeg.ca/scjp/declarations/Point.java
http://www.janeg.ca/scjp/declarations/ThreePoint.java
http://www.janeg.ca/scjp/declarations/TestPrivateAccess.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling -
Statements

Java Statements (JJ pg108)

Statement Description

empty consists of ; and performs no operation

block group of statements enclosed in {}. Treated as a single statement when
used with other statements

 { x +=y;
 if(x < 10)
 return y;
 }

declaration declares a variable with a particular type and optionally assigns a value:
int x = 10;

labeled any statment may be labled using identifier:

 startLoop:
 for(;;){}

assignment evaluates an expression and assigns the result to a variable: x = y + z;

invocation calls an object method: s.toString();

return returns a value from a method call: return x;

Object creation creates a new instance of a given class: String s = new String("abc");

if..else selects between two alternatives

 if(a==b)
 // do this
 else
 // do this

switch selects from various alternatives

 switch(a) {
 case 1:
 case 2:
 case 3:
 default:

for executes a set of statements for a defined number of iterations

 for(int i=0; i<10; i++) {
 // do this
 }

Java Quick Reference - Flow Control - Statements

http://www.janeg.ca/scjp/flow/statements.html (1 of 2) [15/03/2004 8:48:23 AM]

mailto:feedback@janeg.ca

while executes a block of statements while a condition is true

 while(!done) {
 // do this
 }

do executes a block of statments while a condition is false

 do {
 // this
 }while(!done);

break transfers the flow of control to a labeled block or out of an enclosing
statement

continue forces a loop to start the next iteration

try-catch-finally catches and processes exception errors that occur during the execution of
a given block of code

 try {
 // some operation
 } catch (Exception e) {
 // handle the exception
 } finally {
 // do this
 }

throw throw an exception

synchronized gets a lock on an object and executes a statement block

 synchronized(obj){
 obj.setProperty(x);
 }

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - Statements

http://www.janeg.ca/scjp/flow/statements.html (2 of 2) [15/03/2004 8:48:23 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling - if...else
Statement

Syntax

 if(boolean expression) {
 statement1;
 ...
 statementn;
 }

 if(boolean expression) {
 statement1;

 statementn;
 } else {
 statementa;
 ...
 statementz;
 }

the expression must be a boolean type●

curly braces are only required if there is more than one execution statement●

in the first form, the statements are only executed if the boolean expression evaluates to true●

in the second form, the first set of statements are executed if the boolean expression
evaluates to true; otherwise, the statements following else are executed

●

may be nested●

 if(x == y) {
 // do this
 } else if(x > y) { // nested 'if'
 // do this
 } else {
 // do this
 }

Example Code
TestIf.java●

Traps
a non-boolean value used in the if()●

using the assignment operator '=' vs '=='●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - if..else Statement

http://www.janeg.ca/scjp/flow/if.html [15/03/2004 8:48:23 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/flow/TestIf.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling - switch
Statement

Syntax (JLS §14.10)

 switch(expression) {
 case value1:
 statement1;
 break;
 case value2:
 statement2;
 break;
 case value3:
 statement3;
 break;
 ...
 case valuen:
 statement n;
 break;
 default:
 statements;
 }

transfers control depending on the value of an expression●

the type of the expression must be byte, char, short or int●

case labels must be constant expressions capable of being represented by the switch
expression type

●

Watch for mismatching case constants!

 char c;

 switch(c) {
 case 'a':
 case 'b':
 case "c": // String, not character!
 case 'd':
 }

no two case constant expressions may be the same●

the default case does not have to be at the end of the code block●

if no case matches the expression, the default case will be executed●

if break is omitted between case blocks the code will fallthrough, continuing to execute
statements until a break statement or the end of the switch block is encountered

●

Example Code
TestSwitch.java●

Java Quick Reference - Flow Control - switch Statement

http://www.janeg.ca/scjp/flow/switch.html (1 of 2) [15/03/2004 8:48:24 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/flow/TestSwitch.java

Tips
you do not have to have a default statement●

the default statement can appear anywhere in the construct, does not have to be last●

Traps
using an expression vs a value promotable to int●

duplicate case values●

case statements with wrong type●

missing break statements●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - switch Statement

http://www.janeg.ca/scjp/flow/switch.html (2 of 2) [15/03/2004 8:48:24 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling - for
Statement

Syntax (JLS §14.13)

 for(initialization; boolean expression; iteration) {
 statement(s);
 }

executes some initialization code, then repeatedly executes a boolean expression and some
iteration code until the expression is false

●

all three parts are optional ie the following examples are legal●

 for(intialization; ;)
 for(; expression; iteration)
 for(; ; iteration)
 for(; ;) // endless loop

Initialization

initializes variables used within the loop●

if variables are declared within the loop, they are discarded after the loop completes●

For example, in the following code the initialization variable i is declared outside the for
loop; so it's value is still available once the loop completes

●

 int i;
 for (i=0; i<10 ; i++) {
 // do something
 }
 System.out.println("value of i: " + i);

In the following code, x is declared and initialized inside the for-loop and is therefore only
accessible within the loop

●

 for (int x=0; x<10 ; x++) {
 // do something
 }
 // compile-error, cannot resolve symbol: x
 System.out.println("value of i: " + x);

can be more than one initialization statement but the variables must either be declared
outside the for-loop or the type for the variables must be declared at the beginning

●

Following compiles and runs ok:

 for(int x=10, y=0; x>y; x--, y++){
 System.out.println(x + "\t" + y);
 }

Following produces compile error

 int x;

Java Quick Reference - Flow Control - for Statement

http://www.janeg.ca/scjp/flow/for.html (1 of 3) [15/03/2004 8:48:25 AM]

mailto:feedback@janeg.ca

 for(x=10, int y=0; x>y; x--, y++){
 System.out.println(x + "\t" + y);
 }

Boolean expression

if the expression evaluates to true the loop continues; otherwise, the loop is exited and
execution continues after the loop statment block

●

Iteration

if the expression evaluates to true, the block statements are executed and then the iteration
occurs

●

if the expression evaluates to false, iteration does not occur●

Break statement

you can use a break statement to exit a for-loop at any time●

the break forces processing to the line following the for-loop statement block●

 for(i=0; i<10; i++){
 if(i==5) break;
 }
 // process continues here after the break

Continue statement

you can use continue to force processing to the next loop iteration●

 for(i=0; i<10; i++){
 if(i==5)
 continue; // skip printing 5
 else
 System.out.println(i);
 }

Example Code
TestFor.java●

Jaworski Exam Question 7, Chapter 5●

Jaworski Exam Question 8, Chapter 5●

Tips
all sections of the for() loop are optional●

Traps
attempting to access a variable declared in the initialization outside of the for-loop●

incorrect initialization expression●

non-boolean expression●

Statements if switch for while do

Java Quick Reference - Flow Control - for Statement

http://www.janeg.ca/scjp/flow/for.html (2 of 3) [15/03/2004 8:48:25 AM]

http://www.janeg.ca/scjp/flow/TestFor.java
http://www.janeg.ca/scjp/flow/Q5_7.java
http://www.janeg.ca/scjp/flow/Q5_8.java

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - for Statement

http://www.janeg.ca/scjp/flow/for.html (3 of 3) [15/03/2004 8:48:25 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling - while
Statement

Syntax (JLS §14.11)

 while(boolean expression) {
 statement(s);
 }

executes statement(s) repeatedly until the value of expression is false●

if the expression is false the first time, the statements will never execute●

 int i = 1;

 while(i>3) {
 System.out.println("This shouldn't print");
 }

both the break and continue statements can be used to alter the processing of a while loop●

 while(i < 10){
 if(i == 5) break; // break out of loop
 System.out.println(i);
 i++;
 }

 while(i < 10){
 if(i==5) {
 i++;
 continue; // force next loop
 }

 System.out.println(i);
 i++;
 }

Example Code
TestWhile.java●

Traps
non-boolean expression●

using '=' instead of '==' for boolean expression●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - while Statement

http://www.janeg.ca/scjp/flow/while.html (1 of 2) [15/03/2004 8:48:26 AM]

http://www.janeg.ca/scjp/flow/language.html
http://www.janeg.ca/scjp/flow/language.html
http://www.janeg.ca/scjp/flow/operatorsAndAssignments.html
http://www.janeg.ca/scjp/flow/operatorsAndAssignments.html
http://www.janeg.ca/scjp/flow/flow.html
http://www.janeg.ca/scjp/flow/flow.html
http://www.janeg.ca/scjp/flow/declarations.html
http://www.janeg.ca/scjp/flow/declarations.html
http://www.janeg.ca/scjp/flow/gc.html
http://www.janeg.ca/scjp/flow/gc.html
http://www.janeg.ca/scjp/flow/overloading.html
http://www.janeg.ca/scjp/flow/overloading.html
http://www.janeg.ca/scjp/flow/threads.html
http://www.janeg.ca/scjp/flow/threads.html
http://www.janeg.ca/scjp/flow/langPkg.html
http://www.janeg.ca/scjp/flow/langPkg.html
http://www.janeg.ca/scjp/flow/utilPkg.html
http://www.janeg.ca/scjp/flow/utilPkg.html
http://www.janeg.ca/scjp/flow/awt.html
http://www.janeg.ca/scjp/flow/awt.html
http://www.janeg.ca/scjp/flow/io.html
http://www.janeg.ca/scjp/flow/io.html
http://www.janeg.ca/scjp/flow/ref.html
http://www.janeg.ca/scjp/flow/ref.html
http://www.janeg.ca/scjp/flow/misc.html
http://www.janeg.ca/scjp/flow/misc.html
http://www.janeg.ca/scjp/flow/tips.html
http://www.janeg.ca/scjp/flow/tips.html
http://www.janeg.ca/scjp/flow/mocks.html
http://www.janeg.ca/scjp/flow/mocks.html
mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/flow/TestWhile.java

Java Quick Reference - Flow Control - while Statement

http://www.janeg.ca/scjp/flow/while.html (2 of 2) [15/03/2004 8:48:26 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling - while
Statement

Syntax (JLS §14.12)

 do {
 statement(s);
 } while(boolean expression);

executes statement(s) until expression is false●

statement(s) are always executed at least once●

 do {
 System.out.println("Always executed at least once");
 } while(false);

break can be used to alter do-loop processing●

 do {
 if(i==6) break; // exit loop
 System.out.println(i);
 i++;
 }while(i < 10);

continue can be used to alter do-loop processing●

 do {

 if(i==6) {
 i--;
 continue; // skip 6
 } else {
 System.out.println(i);
 i--;
 }

 } while (i >= 0);

Example Code
TestDo.java●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - do..while Statement

http://www.janeg.ca/scjp/flow/do.html [15/03/2004 8:48:31 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/flow/TestDo.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling - Label
Statements

Syntax

 identifier:

can be used with loops or statement blocks●

must precede the statement●

useful with break or continue which normally terminate or continue the innermost block●

outer:
 for(i=0; i<10; i++){
 for(j=10; j>0; j--){
 if(j == 5) {
 break outer; // exit entire loop
 }
 }
 }

Output: 0 5

outer:
 for(i=0; i<10; i++){
 for(j=10; j>0; j--) {
 if(j== 5) {
 continue outer; // next iteration of i
 }
 }
 }

Output: 10 5

Note

two or more statements can have the same name as long as one is not enclosed
within the other

●

Example Code
TestLabels.java●

Jaworski Exam Question 9, Chapter 5●

Jaworski Exam, Question 10, Chapter 5●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - Label Statements

http://www.janeg.ca/scjp/flow/labels.html [15/03/2004 8:48:31 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/flow/TestLabels.java
http://www.janeg.ca/scjp/flow/Q5_9.java
http://www.janeg.ca/scjp/flow/Q5_10.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling -
Exceptions
Definition:

An exception is an event that occurs during the execution of a program that disrupts the
normal flow of instructions. (Sun tutorial: Handling Errors with Exceptions)

exceptions provide a clean way to check for errors●

they are an explicit part of a methods contract●

exceptions are thrown at runtime if errors occur when a class is loaded or during method
execution

●

runtime exceptions are objects of the classes java.lang.RuntimeException,
java.lang.Error or their subclasses

●

runtime exceptions are also called unchecked exceptions●

code may also throw an exception using the throw statement●

these are non-runtime or checked exceptions●

any exceptions you create in your code should extend java.lang.Exception which
implements the interface java.lang.Throwable

●

you create your own exceptions to add useful data to an error message or, if you are
interested in a particular error

●

both forms of exceptions (checked and unchecked) may be caught and handled in
exception-handling code

●

an uncaught exception is caught by a default handler which halts execution and displays an
error message

●

exception handling is done using the try-catch-finally statment●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - Exceptions

http://www.janeg.ca/scjp/flow/exceptions.html [15/03/2004 8:48:33 AM]

mailto:feedback@janeg.ca

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling -
Exception Handling

methods must declare which checked exceptions they may throw in their throws clause●

public void methodName throws Exception1, Exception2,()

you do not have to include any checked exception which will be caught and handled within
the method

●

a method can throw multiple exceptions●

a method can only throw exceptions that have been declared in the throws clause●

an overriding method cannot throw any checked exceptions which are not part of the
original methods throws clause

●

the throws clause must also include any possible exceptions that can be thrown by the
method

●

if you invoke a method that has a checked exception in its throws clause you can

catch and handle the exception1.

catch it and throw one of the exceptions listed in the method throws clause2.

declare the exception in your throws clause3.

●

a method which does not have a throws clause may still throw unchecked exceptions or
errors

●

these exceptions and errors can occur at any time, in any code●

Standard Unchecked Exceptions:

ArithmeticException IllegalTrheadStateException
ArrayStoreException IndexOutOfBoundsException
ClassCastException MissingResourceException
EmptyStackException NegativeArraySizeException
IllegalArgumentException NoSuchElementException
IllegalMonitorStateException NullPointerException
IllegalStateException NumberFormatException
 SecurityException

Standard Unchecked Errors:

AbstractMethodError NoSuchFieldError
ClassFormatError NoSuchMethodError
ExceptionInInitializerError OutOfMemoryError
IllegalAccessError StackOverflowError
IncompatibleClassChangeError ThreadDeath
InstantiationError UnknownError
InternalError UnsatisfiedLinkError
LinkageError VerifyError
NoClassDefFoundError VirtualMachineError

Static initializers, instance initializers, and class or variable initializers must not produce any
checked exceptions

●

exceptions are thrown using the throw statement●

throw Expression;
throw new ExampleException();

Java Quick Reference - Flow Control - Exception Handling

http://www.janeg.ca/scjp/flow/methodThrows.html (1 of 2) [15/03/2004 8:48:33 AM]

mailto:feedback@janeg.ca

or by invoking a method that throws an exception●

the expression must be an instance of a Throwable object ie the exception class must
implement Throwable

●

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - Exception Handling

http://www.janeg.ca/scjp/flow/methodThrows.html (2 of 2) [15/03/2004 8:48:33 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Flow Control and Exception Handling -
try-catch-finally

Syntax (JPL pg155)

try {
 statements;
} catch (exceptionType1 identifier1) { // one or multiple
 statements;
} catch (exceptionType2 identifier2) {
 statements;
}
...
} finally { // one or none
 statements;
}

must include either one catch clause or a finally clause●

can be multiple catch clauses but only one finally clause●

the try statements are executed until an exception is thrown or it completes successfully●

a compile-error occurs if the code included in the try statement will never throw one of the
caught checked exceptions (runtime exceptions never need to be caught)

●

if an exception is thrown, each catch clause is inspected in turn for a type to which the
exception can be assigned; be sure to order them from most specific to least specific

●

when a match is found, the exception object is assigned to the identifier and the catch
statements are executed

●

if no matching catch clause is found, the exception percolates up to any outer try block that
may handle it

●

a catch clause may throw another exception●

if a finally clause is included, it's statements are executed after all other try-catch processing
is complete

●

the finally clause executes wether or not an exception is thrown or a break or continue are
encountered

●

Note

If a catch clause invokes System.exit() the finally clause WILL NOT execute.●

Also see

Sun Tutorial on Handling Errors with Exceptions●

Sun Tech Tip: Finally Clause●

Example Code
Example code from Java 2 Certification●

Some other exception handling code●

Jaworski Exam Question 14, Chapter 5●

Jaworski Exam Question 15, Chapter 5●

Java Quick Reference - Flow Control - try-catch-finally

http://www.janeg.ca/scjp/flow/try.html (1 of 2) [15/03/2004 8:48:34 AM]

mailto:feedback@janeg.ca
http://web2.java.sun.com/docs/books/tutorial/essential/exceptions/index.html
http://developer.java.sun.com/developer/TechTips/1998/tt0915.html#tip2
http://www.janeg.ca/scjp/flow/ExceptionTest.java
http://www.janeg.ca/scjp/flow/TestExceptionHandling.java
http://www.janeg.ca/scjp/flow/Q5_14.java
http://www.janeg.ca/scjp/flow/Q5_15.java

Statements if switch for while do

Labels Exceptions
Handling

Exceptions
try-catch-finally

Java Quick Reference - Flow Control - try-catch-finally

http://www.janeg.ca/scjp/flow/try.html (2 of 2) [15/03/2004 8:48:34 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Conversions

Implicit conversions (JPL pg 121)

conversions which happen automatically●

any primitive type value can be converted to a type which supports a larger value (widening
primitive conversion)

●

implicit conversion occurs from integer to floating point values but not vice versa●

you can use an object of one type wherever a reference to one of it's supertypes is required ie
you can reference up the class hierarchy but not down

●

you can assign a null object reference to any object reference●

Explicit conversion (JPL pg 122)

when one type cannot be assigned to another type through implicit conversion you can use
the cast operator

●

Identity Conversion (JLS §5.1.1)

any type can be converted to it's own type●

only conversion allowed for boolean primitive type●

Widening Primitive Conversion (JLS §5.1.2)

byte -> short -> int -> long -> float -> double
char -> int -> long -> float -> double

widening conversions of integer types preserve the exact original value of the number●

runtime errors never occur as a result of widening conversion●

which is why widening conversion does not allow byte and short values to be converted to
char as the char type is unsigned while byte and short are signed; the byte and short would
lose information

 byte b = 126;
 short s = 1000;
 char c;

 c = b; // compile error: possible loss of precision
 c = s; // compile error: possible loss of precision

●

widening conversion of an int or long to a float may result in loss of precision however the
new float value will be the correctly rounded equivalent of the original number

●

the same applies when a long is widened to a double●

Narrowing Primitive Converson (JLS §5.1.3)

double -> float -> long -> int > char -> short > byte

narrowing primitive conversion may lose information about the overall magnitude of the
number and may also lose precision

●

runtime errors never occur as a result of narrowing conversion because compile time errors
occur if you try it; need to use cast operator

●

Java Quick Reference - Operators - Conversions

http://www.janeg.ca/scjp/oper/conversions.html (1 of 3) [15/03/2004 8:48:36 AM]

mailto:feedback@janeg.ca

narrowing conversion loses all but the lowest bits (see Working with Binary, Octal and Hex
numbers)

●

narrowing from floating-point numbers to integer numbers occurs within the following
minimum and maximum values (values are rounded-toward-zero)

●

long: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647
short: 0..-1
char: 0..65535
byte: 0..-1

if the floating-point value is NaN the result is an int or long value of zero●

Widening Reference Conversion (JLS §5.1.4)

convert from any class, interface or array reference to an Object reference●

convert from any class to any interface that it implements●

convert from any class, interface or array type to a null reference●

convert from any subinterface to any interface it extends●

from any array to type Cloneable or type java.io.Serializable●

from any array of references to an array of compatible reference types●

the above conversions never produce a runtime error or require special action●

You can't instantiate an interface reference as interfaces are always abstract

 SuperInterface si = new SuperInterface(); // compile-error

Narrowing Reference Conversion (JLS §5.1.5)

from Object to any other class, interface or array type●

from any superclass to a subclass●

from any non-final class to any interface as long as the class does not implement the
interface

●

from any interface to any non-final class●

from any interface to any final class providing the final class implements the interface●

from any interface to any other non-superinterface and providing neither interface contains
methods with the same signature

●

from any array of reference types to any other array of reference types as long as the types of
each array are compatible under the Narrowing Reference rules

●

The above will be allowed at compile time but may throw a runtime ClassCastException if the
types are not compatible

Summary

widening conversions do not require casts and will not produce compile or
runtime errors

●

narrowing conversions require explicit casts. Will compile ok but may result in
runtime ClassCastException errors

●

String Conversions

every other type, including null, can be converted to String●

Method Conversion

each argument is converted to the type of the method parameters●

widening conversion is implicit●

Java Quick Reference - Operators - Conversions

http://www.janeg.ca/scjp/oper/conversions.html (2 of 3) [15/03/2004 8:48:36 AM]

narrowing conversion is not implicit (values must be cast)●

Forbidden Conversions (JLS §5.1.7)

reference to primitive●

primitive to reference (excepting String)●

null to primitive●

reference or primitive to boolean●

boolean to reference (excepting String) or primitive●

one class to another unless they have a superclass/subclass relationship (excepting String)●

final class to interface unless the final class implements the interface●

class to array unless the class is Object●

array to any class other than Object or String●

array to any interface other than java.io.Serializable or Cloneable●

interface to interface if they contain methods with the same signature●

Also see

Sun Tech Tip: Narrowing and Widening Conversions

Example Code
TestConversions.java●

Traps
variables requiring narrowing conversion being passed to methods without using a cast●

assigning a typed byte or short variable to a char variable●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators - Conversions

http://www.janeg.ca/scjp/oper/conversions.html (3 of 3) [15/03/2004 8:48:36 AM]

http://developer.java.sun.com/developer/TechTips/2000/tt0110.html#tip1
http://www.janeg.ca/scjp/oper/TestConversions.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Cast Operator
the cast operator (type) is used to convert numeric values from one numeric type to another
or to change an object reference to a compatible type

●

used to enable conversions that would normally be disallowed by the compiler●

 byte a = 1;
 byte b = 2;

 byte c = a + b; // a and b are promoted to int
 byte c = (byte)(a + b); // compiles ok

Casting with Object references (JLS §5.5, JJ pg 67)

a reference of any object can be cast to a reference of type Object●

a reference to an object can be cast into a reference of type ClassName if the actual class of
the object, when it was created, is a subclass of ClassName

●

a reference to an object can be cast into a reference of type InterfaceName if the class of the
object implements Interface, if the object is a subinterface of InterfaceName or if the object
is an array type and InterfaceName is the Cloneable interface

●

If you cast up the class hierarchy you do not have to use the cast operator; if you are cast down the
class hierarchy you must use the cast operator (BB pg 41)

However, the compiler uses the declared type to verify the correctness of each method call; which
means you cannot invoke a subclass method from a superclass reference. (See post by Michael
Ernest at JavaRanch)

a cast may work at compile-time but fail at runtime if the actual class of the object cannot be
converted legally

●

while you can cast up and down the class hierarchy, you cannot cast sideways●

you can cast an object reference using String

Example from Java 2 Certification by Jamie Jaworski, pg 69

 String s1 = "abc";
 String s2 = "def";
 Vector v = new Vector();
 v.add(s1);
 s2 = (String) v.elementAt(0); // cast allowed
 System.out.println();
 System.out.println("Value of s2: \t\t" + s2);

 output: abc

Note: if the String cast is omitted, the type of v.elementAt(0) is an Object and a compile
error (incompatible types) results.

●

you cannot use String as a cast type for a primitive type
String s = (String)x is invalid
you can use String s = new Byte(x).toString();

●

X x = new X();
Y y = new Y();
Z z = new Z();

Java Quick Reference - Operators and Assignments - Cast Operator

http://www.janeg.ca/scjp/oper/cast.html (1 of 3) [15/03/2004 8:48:37 AM]

mailto:feedback@janeg.ca
http://www.javaranch.com/ubb/Forum24/HTML/006178.html
http://www.javaranch.com/ubb/Forum24/HTML/006178.html

X xy = new Y(); // compiles ok (up the hierarchy)
X xz = new Z(); // compiles ok (up the hierarchy)
Y yz = new Z(); // incompatible type

Y y1 = new X(); // X is not a Y
Z z1 = new X(); // X is not a Z

X x1 = y; // compiles ok (y is subclass)
X x2 = z; // compiles ok (z is subclass)

Y y1 = (Y) x; // compiles ok but produces runtime error
Z z1 = (Z) x; // compiles ok but produces runtime error
Y y2 = (Y) x1; // compiles and runs ok (x1 is type Y)
Z z2 = (Z) x2; // compiles and runs ok (x2 is type Z)
Y y3 = (Y) z; // inconvertible types (casts sideways)
Z z3 = (Z) y; // inconvertible types (casts sideways)

Object o = z;
Object o1 = (Y)o; // compiles ok but produces runtime error

The casts work at compile time since the cast variable could conceivably be of a compatible type;
however, at runtime the type of the variable is known and if it cannot guarantee to implement the
contract of the cast type a java.lang.CastClassException will be thrown.

Casting with arrays

to cast an object reference to an array type reference, the object must be an array of a
component type that is compatible with the component type of the array type reference

●

double arr[] = {1.5, 2.256, 3.59};
int arr1[] = (int) arr; // compile-error

X[] arrX = { new X(), new X(), new X() };
Y[] arrY = { new Y(), new Y(), new Y() };

arrX = arrY; // compiles ok

Also see:

Conversions●

Example Code
TestCast.java●

Tips
you cannot cast a primitive type to an object reference, or vice versa●

you cannot cast a boolean type to another primitive type●

Traps
result of an integer operation on byte or short types being assigned to a byte or short without
an explicit cast

●

Java Quick Reference - Operators and Assignments - Cast Operator

http://www.janeg.ca/scjp/oper/cast.html (2 of 3) [15/03/2004 8:48:37 AM]

http://www.janeg.ca/scjp/oper/TestCast.java

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Cast Operator

http://www.janeg.ca/scjp/oper/cast.html (3 of 3) [15/03/2004 8:48:37 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Numeric
Promotion

Unary Numeric Promotion

the Unary operators + and - when applied to byte, char or short numeric types result in the
operand being automatically promoted to an int.(JLS §5.6.1)

Example producing compile error:

 byte b = 5; // assign byte value
 byte b1 = +b; // found int, required byte

●

unary promotion also applies for all shift operators. A long operator does not force the
conversion of a left-hand int operator to long(JLS§5.6.1)

●

Binary Numeric Promotion

when operands are of different types, automatic binary numeric promotion occurs with the
smaller operand type being converted to the larger.

●

the following rules are applied in the order given. (JLS §5.6.2)

if either operand is a double, the other operand is converted to double❍

otherwise, if one of the operands is a float, the other operand is converted to a float❍

otherwise, if one of the operands is a long, the other operand is converted to a long❍

otherwise, both operands are converted to int❍

●

Examples producing compile-errors:

 byte = byte + byte; // found int, required byte
 int = float + int; // found float, required int
 long = float + long; // found float, required long
 float = double + float; // found double, required float

Remember to check the type of the variable to which results are assigned

Rules apply to following operators:

Additive: + and -●

Multiplicative: *, /, and %●

Comparison: <, <=, >, and >=●

Equality: = and !=●

Bitwise: &, ^, and |●

Special case for Ternary conditional operator (JLS §15.25)

if one of the operands is byte and the other is short then the type of the expression is short

 byte = true ? byte : short // found short, required byte

●

if one of the operands is a constant of type int and the other operand has a type of byte, short,
or char and the value of the int operand is within the other type range, the type of the
expression will be the type of the non-int operand.

●

Java Quick Reference - Operators - Promotions

http://www.janeg.ca/scjp/oper/promotions.html (1 of 2) [15/03/2004 8:48:38 AM]

mailto:feedback@janeg.ca

 short = true ? short : 1000; // compiles and runs OK
 short = false ? short : 1000; // compiles and runs OK

Example Code
TestNumericPromotion.java●

Traps
expression assigning byte or short operations to a byte or short variable●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators - Promotions

http://www.janeg.ca/scjp/oper/promotions.html (2 of 2) [15/03/2004 8:48:38 AM]

http://www.janeg.ca/scjp/oper/TestNumericPromotion.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Overflow and
Underflow

an overflow results when a calculated value is larger than the number of bytes allowed for its
type

●

a underflow results when a calculated value is smaller than the number of bytes assigned to
its type

●

Java handles overflows by discarding the high-order-bytes that won't fit into the number of
bytes allowed by its type (JJ pg 52)

●

 int n = 2000000000;
 System.out.println(n * n); // output: -1651507200

An int is 32-bits, the result of n*n is
4,000,000,000,000,000,000 which
needs 64-bits which in binary is:

 ---------- high-order bytes -------
 00110111 10000010 11011010 11001110

 ------- low order bytes -----------
 10011101 10010000 00000000 00000000

because an 32-bit cannot retain the number,
the 4 high-order bytes are
dropped leaving the four low-order bytes:

 10011101 10010000 00000000 00000000

which represent 1651507200 and since the right most bit
is a 1 the sign value is negative

overflow or underflow conditions never throw a runtime exception; instead the sign of the
result may not be the same as that expected in the mathematical result

●

You probably won't need to calculate overflows or underflows on the exam but should understand
how they work.

(also see Working with Hex, Octal and Binary numbers)

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators - Overflow and Underflow

http://www.janeg.ca/scjp/oper/overflow.html (1 of 2) [15/03/2004 8:48:39 AM]

mailto:feedback@janeg.ca

Java Quick Reference - Operators - Overflow and Underflow

http://www.janeg.ca/scjp/oper/overflow.html (2 of 2) [15/03/2004 8:48:39 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Binary/Octal/Hex
and Decimal Number Systems
Probably not directly required on exam but helpful when using bitwise and logical operators.

Decimal system

the decimal number system we use every day is built on base ten 1010●

it is based on 10 positions numbered 0 thru 9●

each position corresponds to a power of 10●

 1024 = 1 x 103 -> 1 x 1000 = 1000
 0 x 102 -> 0 x 100 = 000
 2 x 101 -> 2 x 10 = 20
 4 x 100 -> 4 x 1 = 4

 1024

Binary system

computer memory is based on the electrical representation of data●

each memory position is represented by a bit which can be either 'on' or 'off'. This makes it
easier to represent computer memory using a base 2 number system rather than the base 10
decimal system.

●

the binary system represents numbers by a series of 1's and 0's which correspond to 'on' and
'off' values

●

a 1 represents an 'on' position, a 0, an 'off' position●

a byte is represented by 8 bits numbered 0 to 7 from left to right●

the leftmost bit is called the high-order bit, the right most bit, the low-order bit●

in the decimal system, each position corresponds to a power of 10, in the binary system, each
position corresponds to a power of 2

●

01001001 = 0 x 27 -> 0 x 128 = 0
 1 x 26 -> 1 x 64 = 64
 0 x 25 -> 0 x 32 = 0
 0 x 24 -> 0 x 16 = 0
 1 x 23 -> 1 x 8 = 8
 0 x 22 -> 0 x 4 = 0
 0 x 21 -> 0 x 2 = 0
 1 x 20 -> 1 x 1 = 1
 --
 73

the largest number which can be represented by a byte is 255 or
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 or the bit pattern: 1111 1111

●

the smallest number is 0 represented by the bit pattern: 0000 0000●

0 to 255 gives 256 possible values●

Two's-complement

the two's complement method allows us to represent negative and positive values within the●

Java Quick Reference - Operators and Assignments - Binary/Octal/Hex and Decimal Number Systems

http://www.janeg.ca/scjp/oper/binhex.html (1 of 4) [15/03/2004 8:48:40 AM]

mailto:feedback@janeg.ca

0 to 256 bit positions

in this system the numbers 0 thru 127 represent themselves and the numbers 128 to 256
represent negative numbers where 255 = -1, 254 = -2, 253 = -3, ...

●

-1 is represented by 256 - 1 = 255, -127 is represented by 256-127 = 129, and -50 would be
represented by 256 - 50 = 206

●

the high-order bit (the 7th position) is reserved for the sign value of a number●

a 0 in the high order bit means 'the sign value is set to positive'●

a 1 in the high-order bit means 'the sign value is set to negative'●

01111111 = 0 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127
10000000 = 128 or set sign negative
11111111 = 0 - 64 - 32 - 16 - 8 - 4 - 2 - 1 = -127

larger numbers are represented by increasing the number of bits in a memory block●

this is done in multiples of 8 hence 16-bit, 32-bit and 64-bit memory●

16-bit memory can store numbers up to 216-1, 32-bit, 232-1, 64-bit, 264-1●

if signed numbers are being used, the left-most bit still represents the sign●

so, 16-bits allows us to store 0 to 65,535 positions (216 - 1), 32-bits, 0 to 4,294,967,295 (232 -
1)

●

using two's-complement arithmetic with 32-bit memory, subtract the negative number from
65,536 to find it's positive complement ie -336 would be represented by 65536 - 336 = 65200

●

Octal system

uses base 8●

octal digits are represented by 0 thru 7●

each position is a power of 8●

each octal number can be represented by 3 binary digits●

22+21+20 = 4+2+1 = 7●

Decimal Octal Binary

0 0 000

1 1 001

2 2 010

3 3 011

4 4 100

5 5 101

6 6 110

7 7 111

to convert from Octal to Binary just replace the octal digit with the corresponding binary
pattern

 Octal: 17 Binary: 001 111

●

to convert from Binary to Octal just replace the binary pattern with the corresponding octal
digit

 Binary: 111 010 Octal: 72

●

Hexidecimal system

the hexidecimal system uses a base of 16●

hexidecimal digits are represented by 0 thru 9 and the letters A,B,C,D,E,F●

one hexidecimal digit corresponds to a four-digit binary number●

Java Quick Reference - Operators and Assignments - Binary/Octal/Hex and Decimal Number Systems

http://www.janeg.ca/scjp/oper/binhex.html (2 of 4) [15/03/2004 8:48:40 AM]

23+22+21+20 = 8 + 4 + 2 + 1 = 15●

Decimal Hex Binary Decimal Hex Binary

0 0 0000 8 8 1000

1 1 0001 9 9 1001

2 2 0010 10 A 1010

3 3 0011 11 B 1011

4 4 0100 12 C 1100

5 5 0101 13 D 1101

6 6 0110 14 E 1110

7 7 0111 15 F 1111

this makes it easy to convert a number from binary to hex (just replace the binary pattern
with the hex digits) or from hex to binary (replace the hex digit with the binary pattern)

●

Binary: 0000 1111 -> Hex: 0x0F
Binary: 1011 0011 0000 0010 -> Hex: 0xB302

Hex: 0xA0FF -> Binary: 1010 0000 1111 1111
Hex: 0xF075 -> Binary: 1111 0000 0111 0101

Converting between number systems

to convert a decimal number to a Hex, Octal or Binary number divide by the required base,
the resulting remainders, in reverse order represent the required value

●

Convert Decimal 49 to Binary 49:

 49 / 2 = 24 remainder: 1 (49 - 2*24 = 49 - 48 = 1)
 24 / 2 = 12 remainder: 0 (24 - 2*12 = 24 - 24 = 0)
 12 / 2 = 6 remainder: 0 (12 - 2* 6 = 12 - 12 = 0)
 6 / 2 = 3 remainder: 0 (6 - 2* 3 = 6 - 6 = 0)
 3 / 2 = 1 remainder: 1 (3 - 2* 1 = 3 - 2 = 1)
 1 / 2 = 0 remainder: 1 (1 - 2* 0 = 1 - 0 = 1)

 Proof: 110001 = 32+16+0+0+0+0+1 = 4910

Convert Decimal 49 to Octal 49:

 49 / 8 = 6 remainder: 1 (49 - 8*6 = 49 - 48 = 1)
 6 / 8 = 0 remainder: 6 (6 - 8*0 = 6 - 0 = 6)

 Proof: 618 = (6 * 81) + (1 * 80) = 48 + 1 = 4910

Convert Decimal 49 to Hexidecimal 49:

 49 / 16 = 3 remainder: 1 (49 - 16*3 = 49 - 48 = 1)
 3 / 16 = 0 remainder: 3 (3 - 16*0 = 3 - 0 = 3)

 Proof: 3116 = (3*161) + (1*160) = 48 + 1 = 4910

in Java octal numbers are represented by 3 digits beginning with a zero, so 618 would be
written as 061

●

Hex numbers are always represented by 4 digits preceeded by 0x, so 3116 would be written
as 0x0031

●

when converting large decimal numbers to binary, the simplest method is to convert to Hex
and then to binary

●

Java Quick Reference - Operators and Assignments - Binary/Octal/Hex and Decimal Number Systems

http://www.janeg.ca/scjp/oper/binhex.html (3 of 4) [15/03/2004 8:48:40 AM]

Convert 4823 to Hex:

4823 / 16 = 301 remainder: 7 (4823 - 16*301 = 4823 - 4816 = 7)
 301 / 16 = 18 remainder: 13 (301 - 16* 18 = 301 - 288 = 13)
 18 / 16 = 1 remainder: 2 (18 - 16* 1 = 18 - 16 = 2)
 1 / 16 = 0 remainder: 1 (1 - 16* 0 = 1 - 0 = 1)

 Hex value: 0x12D7
 Hex value converted to binary: 0001 0010 1101 0111

when converting large binary numbers, the simplest method is to convert to Hex and then to
decimal

●

Convert Binary 0001 0010 1101 0111 to decimal

 0001 1 1 * 163 = 4096
 0010 2 2 * 162 = 512
 1101 D 13 * 161 = 208
 0111 7 7 * 160 = 7

 4823

Study aids

If you have Windows 95 you can use the Calculator in the Scientific mode
(Start->Programs->Accessories->Calculator) to check results of decimal to hex, binary, and
octal conversions.

●

You can also use the Java Integer wrapper class to output binary, hex and octal strings.
Example: System.out.println(Integer.toBinaryString(-29));

●

Marcus Greene has a great applet that lets you play around with bit-shifting at
http://www.software.u-net.com/applets/BitShift/BitShiftAr.html

●

References:

C: Step-by-Step by Mitchell Waite and Stephen Prata, SAMS, 1991●

Hexidecimal and Octal Notation●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Binary/Octal/Hex and Decimal Number Systems

http://www.janeg.ca/scjp/oper/binhex.html (4 of 4) [15/03/2004 8:48:40 AM]

http://www.software.u-net.com/applets/BitShift/BitShiftAr.html
http://www.rz.uni-hohenheim.de/rz/sys/basics/csc102/ch3.html

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Unary Operators
operate on a single operand●

the unary ~ , + and - operators can only be applied to numeric primitive types●

the unary ! (logical complement) can only be applied to a boolean type●

rules of unary numeric promotion apply●

Unary ~ Bitwise complement (inversion) (JLS §15.15.5)

only used with integer values●

inverts the bits ie a 0-bit becomes 1-bit and vice versa●

in all cases ~x equals (-x)-1●

 byte b0 = 7; // binary: 0000 0111
 byte b1 = ~b0; // binary: 1111 1000 (-8)

 ~7 = -7 -1 = -8
 ~3578 = -3578-1 = -3579
 ~-1234 = -(-1234)-1 = 1233

Unary ! Logical complement (JLS §15.15.6)

returns the logical complement of a boolean type●

 !(false) = true; // complement of 'false' is 'true'
 !(true) = false; // complement of 'true' is 'false'

Unary + operator (JLS §15.15.3)

the result of the unary + operator is a value not a variable

 byte b = +5; // result: 5

●

The unary plus (+) operator has no effect on the sign of a value; it is included for symmetry only
and to allow the declaration of constants
ie MIN_VALUE = +2.0; (JPL pg 128)

Unary - operator (JLS §15.15.4)

for integers negation effect is the same as subtraction from zero●

two's complement is used for integers so for all values of x, -x equals (~x)+1

 byte b;
 b = -5; // result: -5
 b = (~5) + 1; // result: -5

●

negation of the maximum negative int or long value results in the same number. An overflow
occurs but no exception is thrown.

int i;
long l = 0L;
i = -(-2147483648); // result: -2147483648

●

Java Quick Reference - Operators - Unary Operators

http://www.janeg.ca/scjp/oper/unary.html (1 of 2) [15/03/2004 8:48:40 AM]

mailto:feedback@janeg.ca

l = -(-9223372036854775808L) // result: -9223372036854775808;

for floating-point negation is not the same as subtraction from zero●

the unary (-) operator merely negates the sign of the value

 double d = 0D;
 d = -(15.63); // result: -15.63
 d = -(-15.63); // result: 15.63

●

Example Code
TestUnaryQuestions.java●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators - Unary Operators

http://www.janeg.ca/scjp/oper/unary.html (2 of 2) [15/03/2004 8:48:40 AM]

http://www.janeg.ca/scjp/oper/TestUnaryOperations.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Prefix and Postfix
Operators

the operators ++ and -- are used to increment or decrement a variable value by 1●

binary numeric promotion is applied on both the 1 and the variable value before the
addition or subtraction occurs (ie at a minimum both values are promoted to an int) BUT the
type of the expression is the type of the variable so narrowing conversion is applied if
necessary ie if the original variable is a byte, short, or char the result is narrowed to the
corresponding type

●

 byte b = 2;
 byte b1;

 b1 = ++b; // no error although promotion occurs
 b = 127;
 b1 = ++b; // result: -128 (no error as fits within byte type)

the expression has the same type as the variable●

they can appear before a variable (prefix) or after a variable (postfix)●

cannot be used with final variables●

Prefix (++x) and Postfix (x++) increment operators

1 is added to the value of the variable and the result is stored back in the variable●

both operators have the same effect as x = x + 1;

 int x;

 x = 0;
 ++x; // result: 1

 x = 0;
 x++; // result: 1

●

Prefix (--x) and Postfix (x--) decrement operators

1 is subtracted from the value of the variable and the result is stored back in the variable●

both operators have the same effect as x = x - 1

 int x;

 x = 0;
 --x; // result: -1

 x = 0;
 x--; // result: -1

●

Using prefix and postfix operators in expressions

when a prefix expression (++x or --x) is used as part of an expression, the value returned is
the value calculated after the prefix operator is applied

●

Java Quick Reference - Operators and Assignments - Prefix Operators

http://www.janeg.ca/scjp/oper/prefix.html (1 of 2) [15/03/2004 8:48:42 AM]

mailto:feedback@janeg.ca

 int x = 0;
 int y = 0;
 y = ++x; // result: y=1, x=1

 x is incremented by 1 and the result is assigned to y

when a postfix expression (x++ or x--) is used as part of an expression, the value returned is
the value calculated before the postfix operator is applied

 int x = 0;
 int y = 0;
 y = x++; // result: y=0, x=1

 original value of x is stored, x is incremented,
 original value of x is assigned to y

●

when using the postfix form of the operators do not try constructs like

 int x = 0;
 x = x++; // result: 0, x is not incremented

 original value of x is saved (x0rig)
 x is incremented
 x0rig is assigned to x
 therefore, x will always equal original value

●

Effect on 'char' type

both the prefix and postfix forms may be used on char types

 char c = 'a';
 c++; // result: b
 --c; // result: a

●

the type of the variable does not change●

Example Code
TestPrefixAndPostfix.java●

Tips
postfix/prefix operators have the highest level of precedence●

remember that when the postfix operator is used in an expression, the current value of the
variable is used

●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Prefix Operators

http://www.janeg.ca/scjp/oper/prefix.html (2 of 2) [15/03/2004 8:48:42 AM]

http://www.janeg.ca/scjp/oper/TestPrefixAndPostfix.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Arithmetic
Operators

Additive operators (JLS §15.18)

+ and -●

have the same precedence and are left-associative●

operands must be primitive numeric types (see exception for String and +) or compile error
occurs

●

Multiplicative operators (JLS §15.17)

*, /, %●

have the same precedence and are left-associative●

operands must be primitive numeric types or compile error occurs;●

Integer Division and Division by Zero (JJ pg 50, JLS §15.17.2)

integer division rounds towards 0; ie result is truncated

 10 / 3 = 3; // truncated result

●

if the value of the divisor in integer division is 0 an ArithmeticException is thrown

 10 / 0 // runtime error: ArithmeticException

●

if the value of the divisor in floating-point division is 0 no exception is thrown; the value of
the results are as follows:

division of a positive floating-point value: POSITIVE_INFINITY❍

division of a negative floating-point value: NEGATIVE_INFINITY❍

division of a floating-point value by -0: POSITIVE_INFINITY❍

●

 10.34 / 0 // result: Infinity
 -10.34 / 0 // result: -Infinity
 10.34 / -0 // result: Infinity
 0 / 0 // result: NaN (Not a number)

Modulo operations (JLS §15.17.3)

the modulo operator % is also called the remainder operator as it returns the remainder, or
fractional part, of a division operation

●

x % y is equivalent to x - ((int) (x/y) * y)●

can be used with both integer and floating-point numbers●

following rules apply as to the sign of the result:

result is negative if the divdend is negative❍

result is positive if the divdend is positive❍

if the divisor is zero, a runtime ArithmeticException is thrown❍

if the dividend is a floating-point value and the divisor is zero, no exception is thrown
and the result is NaN

❍

●

 5 % 3 = 2

Java Quick Reference - Operators and Assignments - Arithmetic Operators

http://www.janeg.ca/scjp/oper/arithmetic.html (1 of 2) [15/03/2004 8:48:43 AM]

mailto:feedback@janeg.ca

 -5 % 3 = -2
 5.0 % 3 = 2.0
 -5.0 % 3 = -2.0
 5.0 % 0 = NaN // not a number

Also see:

Binary numeric promotion●

Overflow and underflow●

Sun Tech Tip: Division by Zero●

Example Code
TestArithmetic.java

Traps
floating point operation throwing an ArithmeticException●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Arithmetic Operators

http://www.janeg.ca/scjp/oper/arithmetic.html (2 of 2) [15/03/2004 8:48:43 AM]

http://developer.java.sun.com/developer/TechTips/1998/tt0722.html#tip2
http://www.janeg.ca/scjp/oper/TestArithmetic.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - String Operators
the + and += operators both work on Strings●

operators actually signfy concatenation●

the result of the operation is a new string●

Strings are objects, not primitive types, and are read-only and immutable; the contents
never change

●

String variables store references to a string object NOT the string itself●

 String str = "Hello";
 String str1 = "Universe!";
 String str2 = str + str1; // join the two strings together

 String str3 = "";
 str3 += str; // += only works with an initialized var
 String str4 = str2;

in the above code a reference to the string "Hello" is stored in the variable str●

a reference to the string "Universe!" is stored in the variable str1●

a reference to a new string "Hello Universe!" is stored in the variable str2●

the reference for a new string "Hello" is stored in variable str3●

 str3 == str // false (ref to different String objects)

the reference for str2 is stored in variable str4●

 str4 == str2 // true (references are the same)

Where it can get confusing

the String class creates a pool of Strings●

when you create a String by using the new operator or by using the + and += operators (the
string is computed at runtime) you are implicitly telling the compiler to create a new String
object

●

when you create a String by assigning a string literal the compiler searches the existing string
pool for an exact match. If it finds one, a new string is NOT created. Instead the variable is
assigned a reference to the existing pooled string.

●

 String str5 = "Hello Universe!"; // created in the string pool
 String str6 = "Hello Universe!";

 str5 == str2 // false (str2 is not part of the pool, created
 // using '+' operator)
 str5 == str6 // true (matched an existing string found
 // in the pool)

to actually compare the contents of String objects use the String method equals()●

 str5.equals(str2); // true (both objects hold the same string
 // characters)

Java Quick Reference - Operators and Assignments - String Operator

http://www.janeg.ca/scjp/oper/string.html (1 of 2) [15/03/2004 8:48:43 AM]

mailto:feedback@janeg.ca

Strings and primitive types

by the rules of String Conversion (see Conversion) any type can be converted to a string●

this includes the primitive types●

for primitive types, conversion occurs by the compiler calling Type.toString(x) behind the
scenes.

●

int x = 10;
System.out.println("Result: " + x);

is the same as

System.out.println("Result: " + (Integer.toString(x)));

Also see:

String literals●

Sun Tech Tip: Interning Strings●

Example Code
TestStringOperators.java●

Tips
String operations whose result does not alter the original string (ie calling toUpperCase() on
a String that is already in uppercase) return the original string reference; otherwise they
return a reference to a new String

●

Strings are immutable; the original String value can never be changed●

Traps
using == to compare the contents of two different String objects●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - String Operator

http://www.janeg.ca/scjp/oper/string.html (2 of 2) [15/03/2004 8:48:43 AM]

http://developer.java.sun.com/developer/TechTips/1999/tt0114.html#tip3
http://www.janeg.ca/scjp/oper/TestStringOperators.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Bitwise Operators
& AND, | OR, ^ exclusive OR●

used for operations on integer and boolean values (see logical bitwise operators)●

results are calculated bit-by-bit●

binary numeric promotion rules apply●

left associative●

order of precedence: &, ^, |●

& AND operator

returns a 1 if corresponding bits in both operands have a 1, otherwise returns a 0●

 63 = 00000000 00000000 00000000 00111111
 252 = 00000000 00000000 00000000 11111100

 00000000 00000000 00000000 00111100 -> 60

| OR operator

returns a 0 if corresponding bits in both operands are 0, otherwise returns a 1●

 63 = 00000000 00000000 00000000 00111111
 252 = 00000000 00000000 00000000 11111100

 00000000 00000000 00000000 11111111 -> 255

^ exclusive OR

returns a 0 if the corresponding bits of both operands are both 0 or both 1, otherwise returns a
1

●

 63 = 00000000 00000000 00000000 00111111
 252 = 00000000 00000000 00000000 11111100

 00000000 00000000 00000000 11000011 -> 195

Also see

Unary bitwise complement operator ~●

Logical (boolean) bitwise operators●

Example Code
TestBitwise.jsva●

Tips
precdence order is: & ^ |●

Java Quick Reference - Operators and Assignments - Bitwise Operators

http://www.janeg.ca/scjp/oper/bitwise.html (1 of 2) [15/03/2004 8:48:44 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/oper/TestBitwise.java

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Bitwise Operators

http://www.janeg.ca/scjp/oper/bitwise.html (2 of 2) [15/03/2004 8:48:44 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Logical Operators

Boolean logical operators & | and ^

when both operands are boolean the result of the bitwise operators & | and ^ is a boolean●

& - true if both operands are true, otherwise false●

^ - true if both operands are different, otherwise false●

| - false if both operands are false, otherwise, true●

 true & true = true; // both operands true
 true & false = false; // one operand is false

 true ^ false = true; // both operands are different
 true ^ true = false; // both operands are the same

 true | false = true; // one operand is true
 false | false = false; // both operands are false

Conditional AND Operator &&

both operands must be boolean●

result is a boolean●

returns true if both operands are true, otherwise false●

evaluates the right-hand operand only if the left-hand operand is true●

 true && true = true; // both operands evaluated
 false && true = false; // only left-operand evaluated

Conditional OR Operator ||

both operands must be boolean●

result is a boolean●

returns true if one of the operands is true●

evaluates the right-hand operand only if the left-hand operands is false●

 false || true = true; // both operands evaluated
 false || false = false;
 true || false = true; // only lef-operand evaluated
 true || true = true;

The conditional operators are also referred to as short-circuit operators.

Also see

Integer Bitwise operators●

Java Quick Reference - Operators and Assignments - Logical Operators

http://www.janeg.ca/scjp/oper/logical.html (1 of 2) [15/03/2004 8:48:44 AM]

mailto:feedback@janeg.ca

Example Code
TestLogical.java●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Logical Operators

http://www.janeg.ca/scjp/oper/logical.html (2 of 2) [15/03/2004 8:48:44 AM]

http://www.janeg.ca/scjp/oper/TestLogical.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Shift Operators
<< left-shift, >> right-shift, >>> unsigned right-shift●

only used on integer values●

binary numeric promotion is not performed on the operands; instead unary promotion is
performed on each operand separately (JLS §15.19)

●

both operands are individually promoted to int if their type is byte, short or char●

a long shift operator does not force a left-hand int value promotion to long (JLS§5.6.1)●

left-associative●

left-hand operator represents the number to be shifted●

right-hand operator specifies the shift distance

 value << 2 // 2 is the distance to be shifted

●

when the value to be shifted (left-operand) is an int, only the last 5 digits of the right-hand
operand are used to perform the shift. The actual size of the shift is the value of the
right-hand operand masked by 31 (0x1f). ie the shift distance is always between 0 and 31 (if
shift value is > 32 shift is 32%value)

●

35 00000000 00000000 00000000 00100011
31 -> 0x1f 00000000 00000000 00000000 00011111
& -----------------------------------
Shift value 00000000 00000000 00000000 00000011 -> 3

-29 11111111 11111111 11111111 11100011
31 -> 0x1f 00000000 00000000 00000000 00011111
& -----------------------------------
Shift value 00000000 00000000 00000000 00000011 -> 3

when the value to be shifted (left-operand) is a long, only the last 6 digits of the right-hand
operand are used to perform the shift. The actual size of the shift is the value of the
right-hand operand masked by 63 (0x3D) ie the shift distance is always between 0 and 63 (if
shift value is greater than 64 shift is 64%value)

●

the shift occurs at runtime on a bit-by-bit basis●

Left-shift << (JLS §15.19)

bits are shifted to the left based on the value of the right-operand●

new right hand bits are zero filled●

equivalent to left-operand times two to the power of the right-operand
For example, 16 << 5 = 16 * 25 = 512

●

Decimal 16 00000000000000000000000000010000

Left-shift 5 00000000000000000000000000010000
 fill right 0000000000000000000000000001000000000
 discard left 00000000000000000000001000000000

the sign-bit is shifted to the left as well, so it can be dropped off or a different sign can
replace it

●

Right-shift >> (JLS §15.19)

bits are shifted to the right based on value of right-operand●

Java Quick Reference - Operators and Assignments - Shift Operators

http://www.janeg.ca/scjp/oper/shift.html (1 of 3) [15/03/2004 8:48:45 AM]

mailto:feedback@janeg.ca

new left hand bits are filled with the value of the left-operand high-order bit therefore the
sign of the left-hand operator is always retained

●

for non-negative integers, a right-shift is equivalent to dividing the left-hand operator by two
to the power of the right-hand operator
For example: 16 >> 2 = 16 / 22 = 4

●

Decimal 16 00000000000000000000000000010000

Right-shift 2 00000000000000000000000000010000
 fill left 00000000000000000000000000000100
 discard right 00000000000000000000000000000100 -> Decimal 4

Decimal -16 11111111111111111111111111110000

Right-shift 2 11111111111111111111111111110000
 fill left 1111111111111111111111111111110000
 discard right 11111111111111111111111111111100 -> Decimal -4

Unsigned right-shift >>> (JLS §15.19)

identical to the right-shift operator only the left-bits are zero filled●

because the left-operand high-order bit is not retained, the sign value can change●

if the left-hand operand is positive, the result is the same as a right-shift●

if the left-hand operand is negative, the result is equivalent to the left-hand operand
right-shifted by the number indicated by the right-hand operand plus two left-shifted by the
inverted value of the right-hand operand
For example: -16 >>> 2 = (-16 >> 2) + (2 << ~2) = 1,073,741,820

●

Decimal 16 00000000000000000000000000010000

Right-shift 2 00000000000000000000000000010000
 fill left 00000000000000000000000000000100
 discard right 00000000000000000000000000000100 -> Decimal 4

Decimal -16 11111111111111111111111111110000

>>> 2 11111111111111111111111111110000
 fill left 0011111111111111111111111111110000
 discard right 00111111111111111111111111111100

Don't panic that it will take you forever to convert a shift question on the exam. You probably
won't get more than one or two questions and they'll likely involve numbers under 20.

Also see

Working with Binary, Hex, and Octal numbers●

Example Code
TestShift.java●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Java Quick Reference - Operators and Assignments - Shift Operators

http://www.janeg.ca/scjp/oper/shift.html (2 of 3) [15/03/2004 8:48:45 AM]

http://www.janeg.ca/scjp/oper/TestShift.java

Method

Invocation

Java Quick Reference - Operators and Assignments - Shift Operators

http://www.janeg.ca/scjp/oper/shift.html (3 of 3) [15/03/2004 8:48:45 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Comparison
Operators

used to compare primitive types and object references●

organized into three subgroups: relational, equality and the instanceof operator●

Relational operators (< <= > >=) (JLS §15.20.1)

produce a boolean result●

work with integers and floating-point numbers●

binary numeric promotion rules apply for numeric types●

any relational expression with NaN is false●

positive and negative zero are considered equal therefore
-0.0 < 0.0 is false and -0.0 <= 0.0 is true

●

This is not true for Math.min() and Math.max(), which treats -0.0 as being strictly smaller than 0.0

results, otherwise, are the same as their mathematical equivalents●

 Less than: 5 < 6 true
 Less than or equal to: 5 <= 5 true
 Greater than: 5 > 6 false
 Greater than or equal to: 5 >= 5 true

 Less than: -0.0 < 0.0 false
 Less than or equal to: -0.0 <= 0.0 true
 Greater than: 5 > NaN false

Equality operators (== !=) (JLS § 15.21)

produce a boolean result●

lower precedence than the relational operators●

are used to compare primitive types, including boolean, and object references●

binary numeric promotion rules apply for numeric types●

if either operand is a Nan the result is false for == but true for !=●

-0.0 and 0.0 are considered equal●

if the operands are object references, the result is true if both refer to the same object or array
or if both are null

●

if the operands are String objects, the result is false unless they refer to the same String
object, even if the two objects contain the same characters (to compare the characters in a
String object use the String.equals() method) (see String Literals)

●

 Equals: 5 == 5.0 true
 Not Equal: 5 != 5.0 false
 Equals: arr1 == arr2 false [different array objects]
 Equals: arr1 == arr3 true [ref to same array object]
 Not Equal: arr1 != arr2 true
 Not Equal: arr1 != arr3 false
 Equals: s1 == s2 true [same literal]
 Equals: s1 == s3 true [same object reference]

Java Quick Reference - Operators and Assignments - Comparison Operators

http://www.janeg.ca/scjp/oper/comparison.html (1 of 2) [15/03/2004 8:48:47 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/lang/stringLiterals.html

 Equals: s1 == s4 false [s4 is new object]

instanceof Type Comparison Operator (JLS §15.20.2, JJ pg 60)

left-operand must be a reference object or null; cannot use primitive types●

right-operand must be a Class, Interface name or Array type●

determines if the left-operand is an instance of the class, interface or array type specified by
the right-operand

●

returns the boolean value true if:

left-operand is a class or subclass of the right-operand❍

left-operand is an interface or subinterface of the right-operand❍

left-operand is an array of the same class, subclass or interface, subinterface of the
right-operand array type

❍

●

 arr instanceof String[] -> true // arr = array of Strings
 myNull instanceof Object -> false // null is not an object
 arr1 instanceof int[] -> true // arr1 is an arry of int

Example Code
TestComparison.java●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Comparison Operators

http://www.janeg.ca/scjp/oper/comparison.html (2 of 2) [15/03/2004 8:48:47 AM]

http://www.janeg.ca/scjp/oper/TestComparison.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Assignment
Operators

12 assignment operators:
 = *= /= %= += -= <<= >>= >>>= &= ^= |=

●

all are right-associative ie a=b=c groups as a=(b=c) vs (a=b)=c except the simple assignment
operator = which is left-associative
eg a+b+c = (a+b)+c

●

all are used with primitive data types except = and += which can be used with Strings●

all operators of the form op = cast their result to the type of the left-operand●

there is no implicit cast with the simple assignment operator =●

in all cases, x oper= y is equivalent to x = x oper y●

For Example:

 x += y is equivalent to x = x + y
 x %= y is equivalent to x = x % y
 x |= y is equivalent to x = x | y

Rules for Simple Assignment and Object references

if the left-hand operand is a class, the right-operand must be either a null, or of the same
class or subclass type as the class of the left-operand

if class B extends class A,
A a = new B() is ok
as class B is guaranteed to fully implement class A

❍

B b = new A() is not ok
as there is no guarantee that the new A object will implement everything in class B

❍

●

if the left-hand operand is an interface, the right-operand must be either a null, or of the same
interface or superinterface of the left-operand, or, a class that implements the interface or it's
superinterface

if interface InB extends InA, class C implements InA, and class D implements InB
InA inA = new C(); is ok
as class C guarantees to implement everything in interface InA
InB inB = new C(); is not ok
as the new C is not guaranteed to implement everything in interface InB

❍

InA inA1 = new D(); is ok
as class D is guaranteed to implement everything in interface A through it's
implementation of InB which extends InA

❍

●

 class A{}
 class B extends A{}
 interface InA {}
 interface InB extends InA {}
 class C implements InA {}
 class D implements InB {}

 A a1 = new B(); // B is a subclass of A
// B b1 = new A(); // incompatible types

Java Quick Reference - Operators and Assignments - Assignment Operators

http://www.janeg.ca/scjp/oper/assignment.html (1 of 3) [15/03/2004 8:48:48 AM]

mailto:feedback@janeg.ca

 InA inA = new C(); // C implements InA
 InB inB = new D(); // D implements InB
 InA inA2 = new D(); // D implements InA as a superinterface
// InB inB2 = new C(); // incompatible types

 inA = inB; // InA is a superinterface of InB
// inB = inA; // compile-error: incompatible types

 Object o1 = inA; // an Object type can take any reference
 Object o2 = inB;
 Object o3 = new C();

 C c = new Object(); // incompatible types

 B b2 = null; // any object reference can take a null
 InA inA3 = null;

Summary

If everything in the left-operands type contract can be met through the contract
of the right-operand type, then the assignment will work. It doesn't matter if the
right-operand type implements more than the left-operand type; as long as it
implements what the left-operand type contract guarantees.

●

!!! Warning !!!

The compiler treats the object on the right-side of the assignment as if it was the
same type as the object on the left-side of the assignment. At runtime, the real
class of the object is always used.

●

Class of object a1 -> Class B // declared type was Class A
Class of object o1 -> Class D // declared type was Object
Class of object o2 -> Class D // declared type was Object
Class of object o3 -> Class C // declared type was Object

Array assignments (JLS §5.2)

an array can only be assigned to a variable of the same array type, of type Object, of
interface Cloneable, or of interface java.io.Serializable

●

 int intArr[] = { 1,2,3 };
 int intArr1[] = intArr; // compiles ok

// String arr[] = new A(); // incompatible types
// String arr[] = inA; // incompatible types

 Object obj = intArr; // compiles ok
// inA = intArr; // incompatible types
 Serializable inS = intArr; // compiles ok
 Cloneable inC = intArr; // compiles ok

Also see

Conversions●

Sun Tech Tip: Definite Assignment●

Java Quick Reference - Operators and Assignments - Assignment Operators

http://www.janeg.ca/scjp/oper/assignment.html (2 of 3) [15/03/2004 8:48:48 AM]

http://developer.java.sun.com/developer/TechTips/1998/tt0316.html#tip3

Example Code
TestAssignment.java●

Tips
a class may be assigned to an Interface type if the class implements the interface or one of it's
sub-interfaces

●

Traps
assigning subclasses with the same parent to each other●

assigning a parent class to a subclass without a cast●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Assignment Operators

http://www.janeg.ca/scjp/oper/assignment.html (3 of 3) [15/03/2004 8:48:48 AM]

http://www.janeg.ca/scjp/oper/TestAssignment.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Ternary Operator

Syntax

 operand1 ? operand2 : operand3

also referred to as the conditional operator●

if operand1 is true, operand2 is returned, else operand3 is returned●

 true ? op2 : op3 // op2 returned
 false ? op2 : op3 // op3 returned

operand1 must be a boolean type●

operand1 can be an expression that evaluates to a boolean type●

 (5 == 5) ? "yes" : "no" // output: yes

operand1 and operand2 must be promotable numeric types or castable object references, or
null

●

if one of operand2 or operand3 is a byte and the other a short, the type of the returned value
will be a short

●

 byte = true ? byte : short // found short, required byte

if one of operand2 or operand3 is a byte, short or char and the other is a constant int value
which will fit within the other operands range, the type of the returned value will be the type
of the other operand

●

 short = true ? short : 1000 // compiles and runs ok
 short = false ? short : 1000 // compiles and runs ok

otherwise, normal binary numeric promotion applies●

if one of operand2 or operand3 is a null, the type of the return will be the type of the other
operand

●

if both operand2 and operand3 are different types, one of them must be compatible (castable)
to the other type

●

Class_A a = new Class_A();
Class_B b = new Class_B(); // subclass of Class_A
Class_C c = new Class_C();
Class_A a1 = b;
Class_C c1;

c1 = false ? a : c; // compile-error: incompatible types
a1 = true ? b : a; // returns class type of Class_B

Example Code
TestTernary.java●

Java Quick Reference - Operators and Assignments - Ternary Operator

http://www.janeg.ca/scjp/oper/ternary.html (1 of 2) [15/03/2004 8:48:49 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/oper/TestTernary.java

Traps
a non-boolean value or expression used for operand1●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Ternary Operator

http://www.janeg.ca/scjp/oper/ternary.html (2 of 2) [15/03/2004 8:48:49 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Boolean equals()
defined in java.lang.Object therefore inherited by all classes●

returns true if and only if the two variables being compared hold a reference to the same
object

●

To check if objects are of the same class use the Comparison operator: instanceof

 Class_A a = new Class_A();
 Class_B b = new Class_B();
 Class_C c = new Class_A();
 Class_B d = b;
 Class_A e = null;

 a.equals(b) // false (different obj refs)
 a.equals(c) // false (different obj refs)
 b.equals(d) // true (same object refs)
 a.equals(e) // false (always returned when
 // compared to a null)

java.lang.String overrides the java.lang.Object equals() method to return true if and only if
the objects being compared contain the same sequence of characters.

●

 String s0 = "Hello";
 String s1 = new String("Hello"); // force new string object
 String s2 = s0;

 s0.equals(s1) // true (diff objects, same chars)
 s0.equals(s2) // true (same chars, coincidence
 // they are same objects)

java.lang.Boolean overrides the java.lang.Object equals() method, returning true if and only
if the Boolean objects represent the same boolean value

●

 Boolean b0 = new Boolean(true);
 Boolean b1 = new Boolean(false);
 Boolean b2 = new Boolean(true);
 Boolean b3 = b1;

 b0.equals(b1) // false (different boolean values)
 b0.equals(b2) // true (same boolean values)
 b1.equals(b3) // true (same boolean values)

FYI

You cannot assign values to Boolean types with either of the following constructs:

 Boolean b3 = new Boolean();
 boolean b4 = true;

 b3 = b4; // compile-error: incompatible types
 b3 = true; // compile-error: incompatible types

Java Quick Reference - Operators and Assignments - Boolean equals()

http://www.janeg.ca/scjp/oper/equals.html (1 of 2) [15/03/2004 8:48:49 AM]

mailto:feedback@janeg.ca

Example Code
TestBooleanEquals.java●

Tips
all the primitive type wrapper classes override the Object.equals() method to compare the
value of the objects; the default Object.equals() checks if the variables reference the same
object

●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Boolean equals()

http://www.janeg.ca/scjp/oper/equals.html (2 of 2) [15/03/2004 8:48:49 AM]

http://www.janeg.ca/scjp/oper/TestBooleanEquals.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Precedence

Operator precdence (JPL pg 378)

Operator type Operators

Postfix [] . (params) expr++ expr--

Unary ++expr --expr +expr -expr ~ !

Creation or Cast new (type)expr

Multiplicative * / %

Additive + -

Shift << >> >>>

Relational < > >= <= instanceof

Equality == !=

Bitwise AND &

Bitwise exclusive OR ^

Bitwise inclusive OR |

Logical AND &&

Logical OR ||

Ternary ?:

Assignment = += -= *= /= %= >>= <<= >>>= &= ^= |=

Precedence can be overridden using parantheses●

 5 + 3 * 2 // Result: 11
 (5 + 3) * 2 // Result: 16

when two operators of the same precedence are next to each other, associativity rules apply●

all binary operators (except assignment operators) are left-associative●

assignment is right-associative●

 a - b + c is evaluated as (a - b) + c
 5 - 2 + 1 // Result: 4, not 2

 a = b = c is evaluated as a = (b = c)

 int a;
 int b = 5;
 int c = 1;

 a = b = c; // Result: 1

Possible problem areas

where boolean expressions are used to control loops●

 while(v = stream.next() != null)
 processValue(v);

 according to precedence rules, evaluates as

Java Quick Reference - Operators and Assignments - Precedence

http://www.janeg.ca/scjp/oper/precedence.html (1 of 2) [15/03/2004 8:48:50 AM]

mailto:feedback@janeg.ca

 v = (stream.next() != null)

 not the intended
 (v = stream.next()) != null

Example Code
TestPrecedence.java●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Precedence

http://www.janeg.ca/scjp/oper/precedence.html (2 of 2) [15/03/2004 8:48:50 AM]

http://www.janeg.ca/scjp/oper/TestPrecedence.java

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Bitwise vs Logical
Operators

the operand of every expression is evaluated before the operation is performed except for the
short-circuit operators (&&, ¦¦) and ternary operator

●

behaviour can produce unexpected results if you're not careful. For example, the following
code illustrates what can occur if you try to set the value of a variable in an if condition and
you always expect the new value to be available:

●

int i = 10;
int j = 12;

if((i<j) ¦ (i=3) > 5) // value of i after oper: 3
if((i<j) ¦¦ (i=3) > 5) // value of i after oper: 10

if((i>j) & (i=3) > 5) // value of i after oper: 3
if((i>j) && (i=3) > 5) // value of i after oper: 10

with & and ¦ both operands are always evaluated●

with && and ¦¦ the second operand is only evaluated when it is necessary●

with ¦¦ (i<j) evaluates to true; there is no need to check the other operand as ¦¦ returns true if
either of the operands are true

●

with && (i>j) evaluates to false; there is no need to check the other operand as && returns
true only if both operands are true. In this case one is false so there is no need to check the
other operand

●

Also see

Bitwise operators
Logical operators

Example Code
TestBitwiseAndLogical.java●

Traps
using a new value based on a short-circuit operation that was never evaluated●

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Bitwise vs Logical Operators

http://www.janeg.ca/scjp/oper/bitwiseAndLogical.html (1 of 2) [15/03/2004 8:48:51 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/oper/TestBitwiseAndLogical.java

Java Quick Reference - Operators and Assignments - Bitwise vs Logical Operators

http://www.janeg.ca/scjp/oper/bitwiseAndLogical.html (2 of 2) [15/03/2004 8:48:51 AM]

Java Quick Reference

 Home

 SCJP2 Study Notes

 Language Fundamentals

 Operators and Assignments

 Flow Control and
Exceptions

 Declarations and Access
Control

 Garbage Collection

 Overloading and Overriding

 Threads

 The java.lang Package

 The java.util Package

 The java.awt Package

 The java.io Package

 References

 Miscellaneous Notes

 Tips & Traps

 Mock Exams

 Case Studies

 SCJA Notes

 SCJD Notes

 Projects

 Favourite Links

 About

 Feedback

Operators and Assignments - Method Invocation
when you pass a primitive value to a method, a copy of the value is made available to the
method, not the value itself

●

any changes made to the value in the method do not affect the original value●

 int i = 50;
 changeValue(i); // where method multiplies i by 3

Output:
 Original value of i: -> 50
 Value of i in the method: -> 150
 Value of i after method invocation: -> 50

Passing object references

when you pass an object reference to a method, a copy of the reference is passed.
Operations in the method which change the object reference do not affect the original;
however, changes to the object itself within the method affect the original object

●

int[] array = { 10,10,10 } // original array
changeObjectReference(array) // set the reference to a new array
changeActualObject(array) // set the 2nd element of the array

Output:
 Original array values: 10, 10, 10
 Array in the method: 20, 20, 20
 After Object reference changed in method: 10, 10, 10
 After object changed in method: 10, 20, 10

Method invocation conversion (JLS §5.3)

each argument is converted to the type of the method parameters●

widening conversion is implicit●

narrowing conversion is not implicit (values must be cast)●

Also see:

Conversion●

Understanding that parameters are passed by value and not by reference●

Example Code
TestMethodInvocation.java●

Traps
code that results in a primitive value being changed in a method (can't happen)●

code that results in an unchanged object value when it was changed in a method●

failing to cast a value to match a method parameter type ie assuming narrowing conversion●

Java Quick Reference - Operators and Assignments - Method Invocation

http://www.janeg.ca/scjp/oper/methods.html (1 of 2) [15/03/2004 8:48:52 AM]

mailto:feedback@janeg.ca
http://www.janeg.ca/scjp/oper/conversion.html
http://www-4.ibm.com/software/developer/library/praxis/pr1.html?dwzone=java
http://www.janeg.ca/scjp/oper/TestMethodInvocation.java

on a method call

Conversions Promotion Overflow Unary Prefix Arithmetic

 Bin/Hex/Octal Bitwise Shift Comparison Logical Assignment

 Cast Ternary String equals() Precedence Bit vs Logic

Method

Invocation

Java Quick Reference - Operators and Assignments - Method Invocation

http://www.janeg.ca/scjp/oper/methods.html (2 of 2) [15/03/2004 8:48:52 AM]

	www.janeg.ca
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference - Language Fundamentals
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference - SCJD Study Notes
	Java Quick Reference - SCJD Study Notes - Application Design
	Java Quick Reference - SCJD Study Notes - GUI Design
	Java Quick Reference - SCJD Study Notes - Database Processing
	Java Quick Reference - SCJD Study Notes - Networking
	Java Quick Reference - SCJD Study Notes - Threads
	Java Quick Reference - SCJD Study Notes - Error and Exception Handling
	Java Quick Reference - SCJD Study Notes - Security
	Java Quick Reference - SCJD Study Notes - Documentation
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference
	Java Quick Reference - Project - PropertiesViewer
	PropertiesViewer.java
	Java Quick Reference - Project - ClassBrowser
	http://www.janeg.ca/projects/cb/images/cbScreenShot.jpg
	http://www.janeg.ca/projects/cb/images/cb_uml_1.gif
	http://www.janeg.ca/projects/cb/images/classBrowser_uml.gif
	http://www.janeg.ca/projects/cb/images/cbClassGroup_uml.gif
	http://www.janeg.ca/projects/cb/images/cbClassInfo_uml.gif
	http://www.janeg.ca/projects/cb/images/cbDoc_uml.gif
	http://www.janeg.ca/projects/cb/images/cbTreePanel_uml.gif
	http://www.janeg.ca/projects/cb/images/cbTextPane_uml.gif
	http://www.janeg.ca/projects/cb/images/fldGroup_uml.gif
	http://www.janeg.ca/projects/cb/images/ctorGroup_uml.gif
	http://www.janeg.ca/projects/cb/images/methodGroup_uml.gif
	http://www.janeg.ca/projects/cb/images/parsedClassName_uml.gif
	http://www.janeg.ca/projects/cb/images/nameComparator_uml.gif
	http://www.janeg.ca/projects/cb/images/accessSep_uml.gif
	ClassBrowser.java
	AccessSeparator.java
	CBClassGroup.java
	CBClassInfo.java
	CBDocument.java
	CBTextPane.java
	CBTreePanel.java
	ConstructorGroup.java
	FieldGroup.java
	MethodGroup.java
	NameComparator.java
	ParsedClassName.java
	Java Quick Reference - Project - FieldValidation
	ca.janeg.project.FieldValidation (Java2HTML)
	ca.janeg.swing.Utils (Java2HTML)
	Java Quick Reference - Project - Calculator
	ca.janeg.calc.Calculator (Java2HTML)
	ca.janeg.calc.CalculatorEngine (Java2HTML)
	Java Quick Reference - Project - CalendarComboBox
	ca.janeg.calendar.CalendarComboBox (Java2HTML)
	Java Quick Reference - SCJD Study Notes - GUI Design
	Java Quick Reference - SCJD Study Notes - GUI Design
	Java Quick Reference - SCJD Study Notes - Application Design - OOD
	Java Quick Reference - SCJD Study Notes - Application Design - OOP
	Java Quick Reference - SCJD Study Notes - Application Design
	Java Quick Reference - Case Study - Mail Merge
	Java Quick Reference - Mail Merge - Overview
	LaTex
	Java Quick Reference - Case Study - Mail Merge - User Defined Types
	http://www.janeg.ca/case/mail/uml.jpg
	http://www.janeg.ca/case/mail/MailMerge.jpg
	http://www.janeg.ca/case/mail/CommandServer.jpg
	http://www.janeg.ca/case/mail/UNIXCommandServer.jpg
	http://www.janeg.ca/case/mail/MSWindowsCommandServer.jpg
	http://www.janeg.ca/case/mail/FailedCommandException.jpg
	http://www.janeg.ca/case/mail/MessageBox.jpg
	http://www.janeg.ca/case/mail/FileSelector.jpg
	http://www.janeg.ca/case/mail/BrowseButton.jpg
	http://www.janeg.ca/case/mail/Report.jpg
	http://www.janeg.ca/case/mail/ExitActionListener.jpg
	http://www.janeg.ca/case/mail/ExitWindowAdapter.jpg
	Java Quick Reference - Case Study - Mail Merge - Quasi Pseudo Code
	Java Quick Reference - Case Study - Mail Merge - Notes on Design
	Java Quick Reference - Case Study - Mail Merge - Using an Abstract class
	Java Quick Reference - Case Study - Mail Merge - Extending RuntimeException
	Java Quick Reference - Case Study - Mail Merge - The GUI implementation
	http://www.janeg.ca/case/mail/MailMergeInputFields.jpg
	http://www.janeg.ca/case/mail/FileSelector_1.jpg
	http://www.janeg.ca/case/mail/Report_1.jpg
	http://www.janeg.ca/case/mail/MailMerge_1.jpg
	http://www.janeg.ca/case/mail/uml_1.jpg
	Java Quick Reference - Case Study - Mail Merge - Solves a problem or problem domain?
	Java Quick Reference - Case Study - JCalculator
	Java Quick Reference - Case Study - JCalculator - Overview
	Java Quick Reference - Case Study - JCalculator - User Defined Types
	http://www.janeg.ca/case/jcalc/images/FullUml.jpg
	http://www.janeg.ca/case/jcalc/images/JCalculator.jpg
	http://www.janeg.ca/case/jcalc/images/CalculatorButton.jpg
	http://www.janeg.ca/case/jcalc/images/CalculatorCommands.jpg
	http://www.janeg.ca/case/jcalc/images/CalculatorField.jpg
	http://www.janeg.ca/case/jcalc/images/CalculatorStack.jpg
	Java Quick Reference - Case Study - JCalculator - Where the action is
	Java Quick Reference - Case Study - JCalculator - Command Behaviour
	Java Quick Reference - Case Study - JCalculator - Unary Function Behaviour
	Java Quick Reference - Case Study - JCalculator - Binary Function Behaviour
	Java Quick Reference - Case Study - JCalculator - Summary
	Java Quick Reference - java.io Package
	Java Quick Reference - java.io Package - Data Streams
	Java Quick Reference - java.io Package - Character Streams
	Java Quick Reference - java.io Package - Byte Streams
	Java Quick Reference - java.io Package - File Class
	Java Quick Reference - java.io Package - Readers and Writers
	Java Quick Reference - java.io Package - Filters
	Java Quick Reference - java.io Package - Data Input and Output
	Java Quick Reference - java.io Package - Reading and Writing Files
	http://www.janeg.ca/scjp/io/jung.txt
	Java Quick Reference - java.io Package - Serialization
	Java Quick Reference - The Collections Framework
	Java Quick Reference - The Collection Interface
	Java Quick Reference - Collections Abstract Classes
	Java Quick Reference - The Iterator Interface
	Java Quick Reference - The List Interface
	Java Quick Reference - java.lang Package - Main Classes
	Java Quick Reference - java.lang Package - Wrapper Classes
	Java Quick Reference - java.lang Package - Math Class
	Java Quick Reference - java.lang Package - String Immutability
	Java Quick Reference - Language Fundamentals - String Literals
	Java Quick Reference - Language Fundamentals - Source Files
	Java Quick Reference - Language Fundamentals - Package Declarations
	Java Quick Reference - Language Fundamentals - Import Declarations
	Java Quick Reference - Language Fundamentals - Class Declarations
	Java Quick Reference - Language Fundamentals - Interface Declarations
	Java Quick Reference - Language Fundamentals - Constructor Declarations
	Java Quick Reference - Language Fundamentals - Method Declarations
	Java Quick Reference - Language Fundamentals - main()
	Java Quick Reference - Language Fundamentals - Variable declarations and Identifiers
	Java Quick Reference - Language Fundamentals - Keywords
	Java Quick Reference - Language Fundamentals - Default Values
	Java Quick Reference - Language Fundamentals - Arrays
	Java Quick Reference - Language Fundamentals - Primitive Types
	Java Quick Reference - Language Fundamentals - Numeric Literals
	Java Quick Reference - Language Fundamentals - Character Literals
	Java Quick Reference - Language Fundamentals - Class Literals
	Java Quick Reference - java.lang Package - String Class
	Java Quick Reference - java.lang Package - StringBuffer Class
	Java Quick Reference - Threads - Thread Overview
	Java Quick Reference - Threads - The Thread Class
	Java Quick Reference - Threads - Thread Synchronization
	Java Quick Reference - Threads - The Runnable Interface
	Java Quick Reference - Threads - Thread States
	Java Quick Reference - Threads - Thread Scheduling
	Java Quick Reference - Threads - Ending a Thread
	Java Quick Reference - Threads - Thread Execution
	Java Quick Reference - Threads - Thread Locking Protocols
	Java Quick Reference - Threads - synchronized keyword
	Java Quick Reference - Threads - wait() method
	Java Quick Reference - Threads - notify() and notifyAll() methods
	Java Quick Reference - Threads - Thread mechanics
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Encapsulation
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Polymorphism
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - is A vs Has A
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Overloading Methods
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Overriding Methods
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Field Variables
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Initialization
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Top-level Classes
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Inner Classes
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Static Nested Classes
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Local Classes
	Java Quick Reference - Overloading, Overriding, Runtime Types and Object Orientation - Anonymous Classes
	Java Quick Reference - Garbage Collection - Behaviour
	Java Quick Reference - Garbage Collection - Eligibility
	Java Quick Reference - Garbage Collection - finalize()
	Java Quick Reference - Declarations and Access Control - Access Modifiers
	Java Quick Reference - Declarations and Access Control - Special Modifiers
	Java Quick Reference - Declarations and Access Control - this and super
	Java Quick Reference - Declarations and Access Control - Scope
	Java Quick Reference - Declarations and Access Control - Inheritance
	Java Quick Reference - Declarations and Access Control - Access Control
	Java Quick Reference - Flow Control - Statements
	Java Quick Reference - Flow Control - if..else Statement
	Java Quick Reference - Flow Control - switch Statement
	Java Quick Reference - Flow Control - for Statement
	Java Quick Reference - Flow Control - while Statement
	Java Quick Reference - Flow Control - do..while Statement
	Java Quick Reference - Flow Control - Label Statements
	Java Quick Reference - Flow Control - Exceptions
	Java Quick Reference - Flow Control - Exception Handling
	Java Quick Reference - Flow Control - try-catch-finally
	Java Quick Reference - Operators - Conversions
	Java Quick Reference - Operators and Assignments - Cast Operator
	Java Quick Reference - Operators - Promotions
	Java Quick Reference - Operators - Overflow and Underflow
	Java Quick Reference - Operators and Assignments - Binary/Octal/Hex and Decimal Number Systems
	Java Quick Reference - Operators - Unary Operators
	Java Quick Reference - Operators and Assignments - Prefix Operators
	Java Quick Reference - Operators and Assignments - Arithmetic Operators
	Java Quick Reference - Operators and Assignments - String Operator
	Java Quick Reference - Operators and Assignments - Bitwise Operators
	Java Quick Reference - Operators and Assignments - Logical Operators
	Java Quick Reference - Operators and Assignments - Shift Operators
	Java Quick Reference - Operators and Assignments - Comparison Operators
	Java Quick Reference - Operators and Assignments - Assignment Operators
	Java Quick Reference - Operators and Assignments - Ternary Operator
	Java Quick Reference - Operators and Assignments - Boolean equals()
	Java Quick Reference - Operators and Assignments - Precedence
	Java Quick Reference - Operators and Assignments - Bitwise vs Logical Operators
	Java Quick Reference - Operators and Assignments - Method Invocation

