VHDL Syntax Reference

By Prof. Taek M. Kwon
EE Dept, University of Minnesota Duluth

This summary is provided as a quick lookup resource for VHDL syntax and code
examples. Please click on the topic you are looking for to jump to the corresponding

page.

Contents

1. Bits, Vectors, Signals, Operators, TYPEScccveueiiereiiieiiesieeeesieesieeeeseesiesseesseesseeseens
1.1 BitS and VECTOrS IN POc.coiiiieiecie et sre s
1.2 SIONAIS ...ttt e e e e ne e e nreenee s
1.3 CONSEANTS ...ttt bt b et b ettt e et b e b e e be e nre e
1.4 Relational OPEIatOrScoiveieiieieeiesee st eie s e ste e sra e te e sra e st e ee s e e sreenesneesreeneeas
1.5 LOGICAI OPEIALOIS.......eviitiieieiiiieieet ettt bbbt
1.6 ASSIONIMENTS ...ttt ettt e e e et e et e s ae e s te e e e steesbeeseesneesreenneaneesreeneeas
A O g [0 (=] = 0] g /2
1.8 Type ConVErSioN CRArt..........cooiiiiiiie i sre e sae e

2. CONCUITENT STAEMEINTSvieiiiiiie ettt st e e nbeeneas
2.1 Conditional Signal ASSIGNMENTcc.oiiiiiiie e
2.2 Selected Signal ASSIGNMENT.......coiiiiiiiee e

3. Sequential STALEMENTScccieiieie et sre e s e re e
TN Y 14 =1] LSS
3.2 If-then-else StAteMENTccciiiiieiee e
3.3 CaSE SEALEBIMENT......eeieeii ettt b e e et sre e beesreeeree s
2R ol oo o SRR
3.5 WHIIE LOOP .. bbbt
3.6 INFINITE LOOP .vvevieie ettt sttt e et e e esreeeas
3.7 Wt STATEIMENTSeeeeeiee ettt e e te s e nreeneaneesneenes
3.8 Finite State Machine (FSM) Implementationccccocoveviiieiieve e

1. Bits, Vectors, Signals, Operators, Types

1.1 Bits and Vectors in Port
Bits and vectors declared in port with direction.

Example:
port (a:instd_logic; --signal comes in to port a from outside
b : out std_logic; -- signal is sent out to the port b
¢ : inout std_logic; -- bidirectional port
X :instd_logic_vector(7 downto 0); -- 8-bit input vector
y : out std_logic_vector(7 downto 0) -- no ‘;’ for the last item

);

1.2 Signals
Signals are declared without direction.

Example:
signal s1, s2 : std_logic;
signal X, Y : std_logic_vector(31 downto 0);

1.3 Constants
Constants are useful for representing commonly-used values of specific types.

Example:
In the declaration area:
constant init : std_logic_vector(3 downto 0) := “1100”;
signal sig_vec : std_logic_vector(3 downto 0);
In the body:
sig_vec <= init;

1.4 Relational Operators
Return a Boolean result and thus used in if or when clauses.

= equal to: highest precedence
/= not equal to

< less than

<= less than equal

> greater than

>= greater than equal: lowest precedence

1.5 Logical Operators
Bit-by-bit logical operations.

not example) (not a)
and

or

nand

nor

Xor

xnor

1.6 Assignments

<= signal assignment

highest precedence

lowest precedence

= variable assignment, signal initialization

Example:

signal g: std_logic_vector(3 downto 0);

Multiple bits are enclosed using a pair of double quotations:

q <= “10117;

Hexadecimals are represented using X....”:

q <: X”B’ﬂ;

2

A single bit is enclosed using single quotations:

q<: (‘17'707’71”’1’);
You may use named association:

q <: (3:>31” 2:>’O” 1:>?13’ 0:>,1’);

Named association allows position independence, i.e., you can write
q<= (0=>"1,2=>"0", 1=>"1", 3=>"1");

You may combine indices.
q <=0 =>"1",2=>"°0);

Use the keyword ‘others’ to simplify the expression.
q<=(2=>"0’, others => ‘1");

We frequently use others for initialization or setting bits.
X <=“00000000”; --is same as
x <= (others => “0’);

1.7 Concatenation, &

Example: signal a, b : std_logic_vector(7 downto 0) :=“10111111";

b

b <=a(7 downto 2) & “00”; -- b contains “10111100”

1.8 Type Conversion Chart

signed
(Numeric_std)

std_logic_vector
(Std_logic_1164)

integer
(Standard)

()paubis
()paubisun

unsigned
(Numeric_std)

2. Concurrent Statements

Any statement placed in architecture body is concurrent. Only one type of conditional
statements is allowed as concurrent which are shown here.

2.1 Conditional Signal Assignment

Syntax:
signal_name <= value_expr_1 when Boolean_expr_1 else
value_expr_2 when Boolean_expr_2 else
value_expr_3 when Boolean_expr_3 else

value_expr_n;
Example: 4-to-1 Mux

z <= awhen (s="00") else
b when (s="01") else
c when (s="10") else

d when (s="11") else
‘X:, 4-to-1 Mux Z
b

A better way would be:

sl sO

z <= awhen (s="00") else
b when (s="01") else

¢ when (s="10") else

d;

2.2 Selected Signal Assignment

Syntax:
with select_expression select
signal_name <= value_expr_1 when choice_1,
value_expr_2 when choice_2,

value_expr_n when choice_n;

Example: 4-to-1 Mux

with s select
z <=awhen “00”,
b when “01”,
¢ when “10”,

d when others;

3. Sequential Statements

3.1 Variables

Variables are objects used to store intermediate values between sequential VHDL
statements. Variables are only allowed in processes, procedures and functions, and they
are always local to those functions. When a value is assigned to a variable, “:=” is used.

Example:
signal Grant, Select: std_logic;

process(Rst, CIKk)
variable Q1, Q2, Q3: std_logic;
begin
if Rst="1" then
Ql:=°0; Q2:=°0; Q3:=°0%;
elsif (Clk="1" and Clk’event) then

Q1 := Grant;

Q2 := Select;

Q3:=QlorQz;
end if;

end process;

Note: Both signals and variables carry data from place to place. However, you must
always use signals to carry information between concurrent elements of your design.

3.2 If-then-else Statement

Syntax:
if Boolean_expr_1 then
sequential_statements;
elsif Boolean_expr_2 then
sequential_statements;
elsif Boolean_expr_3 then

else
sequential statements;
end if;
Example:
process (a, b, m, n)
begin
if m = nthen
r<=a+b;
elsif m>0then
r<=a-b;
else
r<=a+l,
end if;
end;

3.3 Case Statement

Syntax:
case sel is
when choice_1 =>
sequential_statements;
when choice_2 =>
sequential_statements;

when others =>
sequential_statements;
end case;

Example:

case sel is
when “00” =>
r<=a+b;
when “10”
r<=a-b;
when others =>
r<=a+l,
end case;

3.4 For Loop

Syntax:
for index in loop_range loop
sequential statements;
end loop;

Example:
constant MAX: integer := 8;
signal a, b, y: std_logic_vector(MAX-1 downto 0);

1.‘6'r i in (MAX-1) downto 0 loop
y(i) <= a(i) xor b(i)
end loop;

3.5 While Loop

Syntax:
loop_name: while (condition) loop
---repeated statements
end loop loop_name;

Example:
while error flag /= ‘1’ and done /=1’ loop
Clock <= not Clock;
wait for CLK_PERIOD/2;
end loop;

3.6 Infinite Loop

Syntax:
loop_name: loop

exit when (condition)
end loop loop_name;

Example:

loop
Clock <= not Clock;
wait for CLK_PERIOD/2,;
if done = ‘1’ or error_flag= ‘1" then

exit;

end if;

end loop;

3.7 Wait Statements

wait on signals;
wait until Boolean_expr;
wait for time_expr;

3.8 Finite State Machine (FSM) Implementation

1/0 0/1
0/1

1/0

Finite state machines in VHDL can be implemented by following a typical programming
structure such as given below. It consists of two processes: one for combinational logic
process that sets the next state and output, and a clock handling process that loads the
next state to present state. This implementation is a Mealy machine.

Entity state_machine is
Port(reset, clk, x: in std_logic;
Z: out std_logic);
End state_machine;

--Architecture portion of the code is shown in the next page.

Architecture bhv of state_machine is

Type statetype is (state0, statel); -- define states
Signal Pstate, Next_state: statetype;
Begin

Logic_proc: process(pstate, X)
Begin
Case pstate is
When state0 =>
If x="0" then
Next_state <= statel;
7Z<=°1,
Else
Next_state <= state0;
7 <=0
End if;
When statel =>
If x="1" then
Next_state <= stateoO;
7<=°0
Else
Next_state <= statel,;
7<=°‘1"
End if;
End case;
End process Logic_proc;

Clock_proc: process
Begin
Wait until (clk’event and clk ="1");
If reset = ‘1’ then
Pstate <= statetype’left;
Else
Pstate <= next_state;
End if;
End process Clock_proc;

End bhv;

10

