
Perl Predefined Variables

Variable Description Example
$ARG
$_

The default input and pattern-searching space.
(Mnemonic: underline is understood in certain

operations.)

while (<>) {...} #equiv. only in while
while (defined($_ = <>)) {...}

$a
$b

Special package variables when using sort(), see
sort. @articles = sort {$a cmp $b} @files;

$<digits>
Contains the sub-pattern from the corresponding
set of capturing parentheses from the last pattern

match. (Mnemonic: like \digits.)

$MATCH
$&

The string matched by the last successful pattern
match. (Mnemonic: like & in some editors.)

$PREMATCH
$`

The string preceding whatever was matched by the
last successful pattern match. (Mnemonic: ` often

precedes a quoted string.)

$POSTMATCH
$’

The string following whatever was matched by the
last successful pattern match. (Mnemonic: ' often

follows a quoted string.)

local $_ = 'abcdefghi';
/def/;
print "$` : $& : $'", "\n";
prints abc : def : ghi

$LAST_PATTERN
 _MATCH
$+

The text matched by the last bracket of the last
successful search pattern.

This is useful if you don't know which one of a set
of alternative patterns matched. (Mnemonic: be

positive and forward looking.)

/Version: (.*)|Revision: (.*)/
&&
($rev = $+);

$^N

The text matched by the used group most-recently
closed (i.e. the group with the rightmost closing
parenthesis) of the last successful search pattern.

(Mnemonic: the (possibly) Nested parenthesis that
most recently closed.)

$v = "sep:2:match";
$v =~ /(?:(\d)(?{ $a = $^N }))/;
print $a; # prints 2

@LAST_MATCH_END
@+

This array holds the offsets of the ends of the last
successful submatches in the currently active

dynamic scope.

$+[0] is the offset into the string of
the end of the entire match.
$+[1] is the offset past where $1
ends.
You can use $#+ to determine how many
subgroups were in the last successful
match.

$*

Set to a non-zero integer value to do multi-line
matching within a string, 0 (or undefined) to tell

Perl that it can assume that strings contain a single
line, for the purpose of optimizing pattern

matches. (Mnemonic: * matches multiple things.)

Use of $* is deprecated in modern
Perl, supplanted by the /s and /m
modifiers on pattern matching.

HANDLE->
input_line_number(EXPR)
$INPUT_LINE_NUMBER
$NR
$.

Current line number for the last filehandle
accessed. (Mnemonic: many programs use "." to

mean the current line number.)

IO::Handle->
input_record_separator
(EXPR)
$INPUT_RECORD
 _SEPARATOR
$RS
$/

The input record separator, newline by default.
Setting $/ to a reference to an integer, scalar

containing an integer, or scalar that's convertible
to an integer will attempt to read records instead of

lines, with the maximum record size being the
referenced integer. (Mnemonic: / delimits line

boundaries when quoting poetry.)

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here

HANDLE->
autoflush(EXPR)
$OUTPUT_AUTOFLUSH
$|

If set to nonzero, forces a flush right away and
after every write or print on the currently selected

output channel. Default is 0. (Mnemonic: when
you want your pipes to be piping hot.)

IO::Handle->
output_field_separator
(EXPR)
$OUTPUT_FIELD
 _SEPARATOR
$OFS
$,

The output field separator for the print operator. If
defined, this value is printed between each of

print's arguments. Default is undef. (Mnemonic:
what is printed when there is a "," in your print

statement.)

@arr = (1,2,3);
$, = “ - ”
print @arr; # prints 1 – 2 - 3

IO::Handle->
output_record_separator
(EXPR)
$OUTPUT_RECORD
 _SEPARATOR
$ORS
$\

The output record separator for the print operator.
Default is undef.

(Mnemonic: you set $\ instead of adding "\n" at
the end of the print.)

@arr = (1, 2, “baz”);
$\ = “\t”
foreach (@arr) { print }
prints 1 [tab] 2 [tab] baz

© 2007 Peteris Krumins peter@catonmat.net http://www.catonmat.net good coders code, great reuse

mailto:peter@catonmat.net
http://www.catonmat.net

$LIST_SEPARATOR
$"

This is like $, except that it applies to array and
slice values interpolated into a double-quoted

string (or similar interpreted string). Default is a
space.

@arr = (“foo”, “esr”, “rms”);
$” = “ - ”
print “@arr”; # prints foo – esr – rms

$SUBSCRIPT_SEPARATOR
$SUBSEP
$;

The subscript separator for multidimensional array
emulation. Default is "\034", the same as SUBSEP

in awk. (Mnemonic: comma (the syntactic
subscript separator) is a semi-semicolon.)

If you refer to a hash element as
$foo{$a,$b,$c} it really means
$foo{join($;, $a, $b, $c)}

$#

The output format for printed numbers. This
variable is a half-hearted attempt to emulate awk's
OFMT variable. The initial value is "%.ng", where
n is the value of the macro DBL_DIG from your

system's float.h. (Mnemonic: # is the number
sign.)

HANDLE->
format_page_number
(EXPR)
$FORMAT_PAGE_NUMBER
$%

The current page number of the currently selected
output channel. Used with formats. (Mnemonic: %

is page number in nroff.)

HANDLE->
format_lines_per_page
(EXPR)
$FORMAT_LINES_PER_PA
GE
$=

The current page length (printable lines) of the
currently selected output channel. Default is 60.
Used with formats. (Mnemonic: = has horizontal

lines.)

HANDLE->
format_lines_left(EXPR)
$FORMAT_LINES_LEFT
$-

The number of lines left on the page of the
currently selected output channel. Used with

formats. (Mnemonic: lines_on_page -
lines_printed.)

@LAST_MATCH_START
@-

$-[0] is the offset of the start of the last successful
match. $-[n] is the offset of the start of the

substring matched by n-th subpattern, or undef if
the subpattern did not match.

$` is same as substr($var, 0, $-[0])
$& is the same as substr($var, $-[0],
$+[0] - $-[0])
$' is the same as substr($var, $+[0])
$1 is the same as substr($var, $-[1],
$+[1] - $-[1])
$2 is the same as substr($var, $-[2],
$+[2] - $-[2])
$3 is the same as substr($var, $-[3],
$+[3] - $-[3])

HANDLE->
format_name(EXPR)
$FORMAT_NAME
$~

The name of the current report format for the
currently selected output channel. Default is the

name of the filehandle.
(Mnemonic: brother to $^ .)

HANDLE->
format_top_name(EXPR)
$FORMAT_TOP_NAME
$^

The name of the current top-of-page format for the
currently selected output channel. Default is the

name of the filehandle with _TOP appended.
(Mnemonic: points to top of page.)

IO::Handle->
format_line_break
 _characters(EXPR)
$FORMAT_LINE_BREAK
 _CHARACTERS
$:

The current set of characters after which a string
may be broken to fill continuation fields (starting
with ^) in a format. Default is " \n-", to break on
whitespace or hyphens. (Mnemonic: a "colon" in

poetry is a part of a line.)

IO::Handle->
format_formfeed(EXPR)
$FORMAT_FORMFEED
$^L

What formats output as a form feed. Default is \f.

$ACCUMULATOR
$^A

The current value of the write() accumulator for
format() lines. A format contains formline() calls

that put their result into $^A . After calling its
format, write() prints out the contents of $^A and
empties. So you never really see the contents of
$^A unless you call formline() yourself and then

look at it.

$CHILD_ERROR
$?

The status returned by the last pipe close, backtick
(``) command, successful call to wait() or
waitpid(), or from the system() operator.

The exit value of the subprocess is
really ($?>>8), and $? & 127 gives
which signal, if any, the process died
from, and $? & 128 reports whether
there was a core dump.

${^ENCODING}
The object reference to the Encode object that is

used to convert the source code to Unicode.
Default is undef.

 © 2007 Peteris Krumins peter@catonmat.net http://www.catonmat.net good coders code, great reuse

mailto:peter@catonmat.net
http://www.catonmat.net

$OS_ERROR
$ERRNO
$!

If used numerically, yields the current value of the
C errno variable, or in other words, if a system or
library call fails, it sets this variable. (Mnemonic:

What just went bang?)

if (open(FH, $filename)) {
 # Here $! is meaningless.
 ...
} else {
 # ONLY here is $! meaningful.
 ...
 # Here $! might be meaningless.
}

%!
Each element of %! has a true value only if $! is

set to that value.

For example, $!{ENOENT} is true if and
only if the current value of $! is
ENOENT ; that is, if the most recent
error was "No such file or directory"

$EXTENDED_OS_ERROR
$^E

Error information specific to the current operating
system. (Mnemonic: Extra error explanation.)

$EVAL_ERROR
$@

The Perl syntax error message from the last eval()
operator. (Mnemonic: Where was the syntax error

"at"?)

$PROCESS_ID
$PID
$$

The process number of the Perl running this script.
(Mnemonic: same as shells.)

$REAL_USER_ID
$UID
$<

The real uid of this process. (Mnemonic: it's the
uid you came from, if you're running setuid.)

$EFFECTIVE_USER_ID
$EUID
$>

The effective uid of this process. (Mnemonic: it's
the uid you went to, if you're running setuid.)

$< = $>; # set real to effective uid

swap real and effective uid
($<,$>) = ($>,$<);

$REAL_GROUP_ID
$GID
$(

The real gid of this process. If you are on a
machine that supports membership in multiple

groups simultaneously, gives a space separated list
of groups you are in. (Mnemonic: parentheses are
used to group things. The real gid is the group you

left, if you're running setgid.)

The first number is the one returned
by getgid(), and the subsequent ones
by getgroups(), one of which may be
the same as the first number.

$EFFECTIVE_GROUP_ID
$EGID
$)

The effective gid of this process. If you are on a
machine that supports membership in multiple

groups simultaneously, gives a space separated list
of groups you are in. (Mnemonic: parentheses are

used to group things. The effective gid is the
group that's right for you, if you're running setgid.)

$) = "5 5"

$PROGRAM_NAME
$0

Contains the name of the program being executed.
(Mnemonic: same as sh and ksh.)

$[
The index of the first element in an array, and of

the first character in a substring. Default is 0.
(Mnemonic: [begins subscripts.)

$]
The version + patchlevel / 1000 of the Perl

interpreter. (Mnemonic: Is this version of perl in
the right bracket?)

$COMPILING
$^C

The current value of the flag associated with the -c
switch.

$DEBUGGING
$^D

The current value of the debugging flags.
(Mnemonic: value of -D switch.)

$SYSTEM_FD_MAX
$^F

The maximum system file descriptor, ordinarily 2.

$^H
This variable contains compile-time hints for the

Perl interpreter.

WARNING: This variable is strictly for
internal use only. Its availability,
behavior, and contents are subject to
change without notice.

%^H
The %^H hash provides the same scoping
semantic as $^H. This makes it useful for

implementation of lexically scoped pragmas.

WARNING: This variable is strictly for
internal use only. Its availability,
behavior, and contents are subject to
change without notice.

$INPLACE_EDIT
$^I

The current value of the inplace-edit extension.
Use undef to disable inplace editing. (Mnemonic:

value of -i switch.)

$^M

By default, running out of memory is an
untrappable, fatal error. However, if suitably built,
Perl can use the contents of $^M as an emergency

memory pool after die()ing.

allocate a 64K buffer for use in
an emergency if Perl was compiled
with -DPERL_EMERGENCY_SBRK
$^M = 'a' x (1 << 16);

$OSNAME
$^O

The name of the operating system under which
this copy of Perl was built, as determined during

the configuration process.

${^OPEN}
An internal variable used by PerlIO. A string in

two parts, separated by a \0 byte, 1st part describes
input layers, 2nd part descrabe output layers.

$PERLDB
$^P

The internal variable for debugging support.

$LAST_REGEXP_CODE
 _RESULT
$^R

The result of evaluation of the last successful (?{
code }) regular expression assertion (see perlre).

May be written to.

$EXCEPTIONS_BEING
 _CAUGHT
$^S

Current state of the interpreter.

$^S State
--------- -------------------
undef Parsing module/eval
true (1) Executing an eval
false (0) Otherwise

$BASETIME
$^T

The time at which the program began running, in
seconds since the epoch (beginning of 1970). The
values returned by the -M, -A, and -C filetests are

based on this value.

${^TAINT}
Reflects if taint mode is on or off. 1 for on (the

program was run with -T), 0 for off, -1 when only
taint warnings are enabled (i.e. with -t or -TU).

${^UNICODE} Reflects certain Unicode settings of Perl.

${^UTF8LOCALE}
This variable indicates whether an UTF-8 locale

was detected by perl at startup.

$PERL_VERSION
$^V

The revision, version, and subversion of the Perl
interpreter, represented as a string composed of

characters with those ordinals.

$WARNING
$^W

The current value of the warning switch, initially
true if -w was used, false otherwise, but directly

modifiable. (Mnemonic: related to the -w switch.)

${^WARNING_BITS}
The current set of warning checks enabled by the

use warnings pragma.

$EXECUTABLE_NAME
$^X

The name used to execute the current copy of Perl,
from C's argv[0] or (where supported)

/proc/self/exe.

ARGV
The special filehandle that iterates over command-
line filenames in @ARGV. Usually written as the

null filehandle in the angle operator <>

$ARGV
Contains the name of the current file when reading

from <>.

@ARGV

The array @ARGV contains the command-line
arguments intended for the script. $#ARGV is
generally the number of arguments minus one,

because $ARGV[0] is the first argument, not the
program's command name itself.

ARGVOUT

The special filehandle that points to the currently
open output file when doing edit-in-place

processing with -i. Useful when you have to do a
lot of inserting and don't want to keep modifying

$_.

@F
The array @F contains the fields of each line read
in when autosplit mode is turned on. See perlrun

for the -a switch.

@INC

The array @INC contains the list of places that the
do EXPR , require, or use constructs look for their
library files. It initially consists of the arguments

to any -I command-line switches, followed by the
default Perl library.

@_ Within a subroutine the array @_ contains the
parameters passed to that subroutine.

%INC
The hash %INC contains entries for each

filename included via the do, require, or use
operators.

%ENV
$ENV{expr}

The hash %ENV contains your current
environment. Setting a value in ENV changes the

environment for any child processes you
subsequently fork() off.

%SIG
$SIG{expr}

The hash %SIG contains signal handlers for
signals.

sub handler {
1st argument is signal name
 my($sig) = @_;
 print "Caught a SIG$sig\n";
 close(LOG);
 exit(0);
}
$SIG{'INT'} = \&handler;
$SIG{'QUIT'} = \&handler;
restore default action
$SIG{'INT'} = 'DEFAULT';
ignore SIGQUIT
$SIG{'QUIT'} = 'IGNORE';

