Data Science Cheat Sheet

Python Basics

bASICS, PRINTING AND GETTING HELP

$x=3$ - Assign 3 to the variable x
help(x) - Show documentation for the str data type print (x) - Print the value of x help(print) - Show documentation for the print () function type (x) - Return the type of the variable \mathbf{x} (in this case, int for integer)

READING FILES

f = open("my_file.txt", "r")
file_as_string = f.read()
Open the file my_file.txt and assign its
contents to s
import csv
f = open("my_dataset.csv", "r")
csvreader $=$ csv.reader (f)
csv_as_list = list(csvreader)

- Open the CSV file my_dataset. csv and assign its data to the list of lists csv_as_list

STRINGS

$\mathbf{s}=$ "hello" - Assign the string "hello" to the variable s
s = """She said,
"there's a good idea."
"" "

- Assign a multi-line string to the variable s. Also used to create strings that contain both " and ' characters
len(s) - Return the number of characters in s
s.startswith("hel")-Test whether s starts with the substring "hel"
s.endswith("lo") - Test whether s ends with the substring "lo"
"\{\} plus \{\} is \{\}".format($3,1,4$)-Return the string with the values 3,1 , and 4 inserted
s.replace("e","z") - Return a new string based on s with all occurances of "e" replaced with " z "
s.split(" ")-Split the string s into a list of strings, separating on the character " " and return that list

NUMERIC TYPES AND

MATHEMATICAL QPERATIONS
i = int("5") - Convert the string " 5 " to the integer 5 and assign the result to i
$\mathrm{f}=\mathrm{float}(\mathrm{"2.5")}$) - Convert the string " 2.5 " to the float value 2.5 and assign the result to f
5 + 5 - Addition
5-5-Subtraction
10 / 2 -Division
5*2 - Multiplication
$3^{* *} 2$ - Raise 3 to the power of $2\left(\right.$ or $\left.3^{2}\right)$
$27^{* *}(1 / 3)$ - The 3rd root of 27 (or ${ }^{3} \sqrt{ } 27$)
$x+=1$ - Assign the value of $x+1$ to x
$x-=1$ - Assign the value of $x-1$ to x

LISTS

$1=[100,21,88,3]$ - Assign a list containing the integers 100, 21, 88, and 3 to the variable 1
$1=\operatorname{list}()-$ Create an empty list and assign the result to 1

1[0] - Return the first value in the list 1
1[-1] - Return the last value in the list 1
1[1:3] - Return a slice (list) containing the second and third values of 1
len(1) - Return the number of elements in 1
sum(1)-Return the sum of the values of 1
$\min (1)$ - Return the minimum value from 1 $\max (1)$ - Return the maximum value from 1
1 .append(16) - Append the value 16 to the end of 1
l. sort () - Sort the items in 1 in ascending order
" ".join(["A", "B", "C", "D"]) - Converts the list
["A", "B", "C", "D"] into the string "A B C D"

DICTIONARIES

d = \{"CA":"Canada", "GB":"Great Britain", "IN": "India" $\}$ - Create a dictionary with keys of "CA", "GB", and "IN" and corresponding values of of "Canada", "Great Britain", and "India"
d["GB"] - Return the value from the dictionary d that has the key "GB"
d.get("AU", "Sorry") - Return the value from the dictionary d that has the key "AU", or the string
"Sorry" if the key "AU" is not found in d
d.keys() - Return a list of the keys from d
d.values() - Return a list of the values from d
d.items() - Return a list of (key, value) pairs from d

MODULES AND FUNCTIONS

The body of a function is defined through indentation.
import random - Import the module random
from math import sqrt-Import the function sqrt from the module math
def calculate(addition_one, addition_two, exponent=1, factor=1) :
result $=($ value_one + value_two $) *$ exponent * factor return result
Define a new function calculate with two required and two optional named arguments which calculates and returns a result.
addition(3,5 , factor=10) - Run the addition function with the values 3 and 5 and the named argument 10

BOOLEAN COMPARISONS

$\mathbf{x}=\mathbf{5}$ - Test whether \mathbf{x} is equal to 5
$x!=5$ - Test whether x is not equal to 5
$\mathbf{x}>5$ - Test whether \mathbf{x} is greater than $\mathbf{5}$
$\mathbf{x}<\mathbf{5}$ - Test whether \mathbf{x} is less than $\mathbf{5}$
$x>=5$-Test whether \mathbf{x} is greater than or equal to 5
$\mathbf{x}<=5$ - Test whether \mathbf{x} is less than or equal to 5
$x=5$ or name == "alfred" - Test whether \mathbf{x} is equal to 5 or name is equal to "alfred"
$\mathbf{x}==5$ and name == "alfred" - Test whether \mathbf{x} is equal to 5 and name is equal to "alfred"
5 in 1 - Checks whether the value 5 exists in the list 1 "GB" in d-Checks whether the value "GB" exists in the keys for d

IF STATEMENTS AND LOOPS

The body of if statements and loops are defined through indentation.
if x > 5:
print("\{\} is greater than five".format(x))
elif $x<0$:

$$
\text { print("\{\} is negative".format(x)) }
$$

else:
print("\{\} is between zero and five".format(x))

- Test the value of the variable \mathbf{x} and run the code body based on the value
for value in 1:
print(value)
- Iterate over each value in 1, running the code in the body of the loop with each iteration
while x < 10:
$x+=1$
Run the code in the body of the loop until the value of \mathbf{x} is no longer less than 10

