

Silverlight 2
By Chad A. Campbell

CONTENTS INCLUDE:

n	 About Silverlight
 n	 The Silverlight Plug-in
n	 Calling Managed Code from JavaScript
n	 Using Managed Code to Manage the HTML DOM
n	 Accessing the User’s Browser Window
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

Silverlight is Microsoft’s offering for designing, developing,
and delivering rich interactive applications over the
internet. These applications can run on all major platforms
and in all major browsers. In this refcard we’ll cover the
System.Windows.Browser namespace in a whirlwind tour
that includes: calling managed code from JavaScript, using
managed code to control the HTML DOM, and accessing
the user’s browser window. But first, you will see how to
actually create an instance of the Silverlight plug-in.

As this snippet shows, the createObjectEx function is basically
composed of three sections. The first section defines the manda-
tory elements of a plug-in instance. The parameters that define
these elements are shown in the following table:

In addition to the required elements, you can customize the
plug-in instance. These customizations are defined within the
nested properties object. This object was shown in the previous
code snippet. However, only some of the options were shown.
All of the possible options are shown in the following table.

Silverlight is a browser-based plug-in that runs within a web page.
This plug-in can be integrated with any web technology including
ASP, ASP.NET, JSP, and PHP. In order to create an instance of this
plug-in, you must use an HTML object tag or the JavaScript utility
file that is included with the Silverlight SDK. This utility file includes
a JavaScript function called createObjectEx which creates the
object element for you. An example of creating a Silverlight plug-
in with the createObjectEx function is shown here.

ABOUT SILVERLIGHT

THE SILVERLIGHT PLUG-IN

S
il

ve
rl

ig
h

t
2

 w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

Parameter Description

id The unique identifier associated with a Silverlight plug-in.

This parameter is required.

parentElement The HTML DOM element that the Silverlight plug-in is hosted within.

This parameter is required.

source The Silverlight application to load into the plug-in.

This parameter is required.

Property Description

background Represents the color of the rectangular region where the

Silverlight plug-in should be.

enableHtmlAccess Determines whether or not the Silverlight application can access

the HTML DOM.

frameRate The maximum number of frames to render per second.

Height Defines the height of the rectangle that holds the Silverlight

application.

isWindowless Determines whether the plug-in displays as a windowless plug-in.

splashScreenSource The location of the XAML file that is used while a Silverlight

application is loading.

Version Specifies the version of Silverlight that the application requires.

Width Defines the width of the rectangle that holds the Silverlight

application.

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

	 <title>My Silverlight Project</title>

	 <script type="text/javascript" src="Silverlight.js"></script>

</head>

<body>

	 <!-- Create the Silverlight control inside

	 of "mySilverlightHost" -->

	 <div id="mySilverlightHost">

		 <script type="text/javascript">

			 Silverlight.createObjectEx({

			 source: "ClientBin/MySilverlightApp.xap",

			 parentElement: document.getElementById

			 ("mySilverlightHost"),

			 id: "mySilverlightControl",

 		 properties: {

 		 width: "100%",

 		 height: "100%",

 		 version: "2.0"

 		 },

 		 events: {}

 		 });

 	</script>

 </div>

</body>

</html>

1.	Reference the Silverlight.js utility file 	
	 that is part of the Silverlight SDK.

2.	The HTML element
	 that hosts the
	 Silverlight plug-in.

3.	The createObjectEx 	
	 function creates an
	 instance of the
	 Silverlight plug-in.

#10

Silverlight 2
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Silverlight empowers you to expose managed code
to the scripting world. When you consider Silverlight’s
rich networking and data frameworks, the value in this
becomes apparent. For instance, you may choose
to use the powerful LINQ capabilities to query data
or sort a result set. Alternatively, you may need to
retrieve data from an RSS feed. Or perhaps you need
to communicate with a POX, ATOM, REST, SOAP, or
WS-* service. Regardless of your data or communica-
tion task, Silverlight allows you to use the power of
the .NET Framework to accomplish it. Harnessing
this power from JavaScript involves four simple steps:

1.	 Mark the method, property, or event with the
	 ScriptableMember attribute.

2.	 Tag the class that holds the item from step 1 with 	
	 the ScriptableType attribute.

3.	 Create the bridge between the class instance and 	
	 the HTML DOM with the RegisterScriptableObject 	
	 class.

4.	 Call the item from step 1 from JavaScript.

These four steps outline the process of exposing
managed code to the scripting world. To demonstrate
how this looks with actual code, we will call a C# method
that returns the current date and time. This date and
time will then be printed within an alert prompt.

CALLING MANAGED CODE FROM JAVASCRIPT

USING MANAGED CODE TO MANAGE THE HTML DOM

The Silverlight Plug-in, continued

In addition to defining the general look of the plug-in, it can
also be configured to respond to certain events. These events
are listed here:

JavaScript from Hosting Web Page

Class Hosted within Silverlight Application

The events, properties, and core items of the createObjectEx
function define how to create an instance of the Silverlight
plug-in. This instance may host a Silverlight application which
includes some managed code methods. Significantly, you may
call these managed code items from JavaScript.

Event Description

onError Handles an exception that has not been caught within
the Silverlight application.

onLoad Triggered when the plug-in is created and all of the
Silverlight content has been loaded.

Event Description

onSourceDownloadProgressChanged Fires when .05% or more of the Silverlight
application has downloaded. This can be used
to update the splash screen referenced by the
splashScreenSource parameter.

onSourceDownloadComplete Triggered when the Silverlight application has
been fully downloaded.

function CallManagedCode()

{

 	 var mySilverlight = document.getElementById("mySilverlight");

 	 var currentTime = mySilverlight.content.bridge.GetDateTime();

 alert(currentTime);

}

[ScriptableType]

public class MyClass

{

 	 public MyClass()

 	 {

 		 HtmlPage.RegisterScriptableObject("bridge", this);

 	 }

	 [ScriptableMember]

 	 public string GetDateTime()

 	 {

 		 DateTime currentTime = DateTime.Now;

 		 return currentTime.ToString();

	 }

}

1. 	A Silverlight application is hosting in a 	
	 Silverlight plugin. This plugin is added to 	
	 the HTML DOM as an OBJECT element. 	
	 This line retrieves the Silverlight plugin 	
	 from the HTML DOM.

2.	The content property 		
	 gives us access to a
	 Silverlight application 		
	 from the HTML DOM.

3.	The “bridge” item is
actually set by us. We set
this from managed code.
This item gives us access to
ScriptableMember items in
ScriptableType elements.

4.	The RegisterScriptableObject method exposes a 	
	 class instance to the scripting world. This object 	
	 will be exposed using the handle you pass as the 	
	 first parameter. In this case, the handle is “bridge”.

This example demonstrates how to call managed code from
JavaScript. This approach lets us use the .NET Framework in
Silverlight to perform tasks that are traditionally difficult or
annoying in JavaScript. For instance, consider the task of
parsing XML in JavaScript. This task is quite cumbersome
with ECMA JavaScript. However, with the powerful .NET

Framework provided by Silverlight, this task is a cinch. You
can use the feature we just learned about to either enhance,
or replace, some current functionality written in JavaScript.
However, in order to truly replace that functionality, you will
probably need to know how to manage the HTML DOM from
managed code.

Silverlight gives us the flexibility to manage the HTML DOM
from managed code. This means you can alter HTML elements
using a language such as C# or Visual Basic. These languages
offer features such as compile-time type-checking and richer
IntelliSense support through Microsoft Visual Studio. Either way,

when you consider coupling this with the ability to call managed
code from JavaScript, you can see a powerful combination.
This powerful combination is glued together by three classes:
HtmlPage, HtmlDocument, and HtmlElement.

→

3

DZone, Inc. | www.dzone.com

Silverlight 2
 tech facts at your fingertips

Using Managed Code to Manage the HTML DOM,
continued

Finding HTML Elements
Searching for HTML elements from managed code is an
important part of taking advantage of the HTML DOM API.
We can traverse through the hierarchy of a web page using
the DocumentElement, Children, and Parent properties
mentioned earlier. However, the HtmlDocument class exposes
two methods that empower us to retrieve HtmlElement items
more efficiently. These methods are listed and described in
the following table.

Setting Element Properties
The HtmlElement class exposes an all-purpose method
called SetProperty. This method empowers us to set an ele-
ment’s attribute from managed code. To accomplish this, we
must use two string parameters:

n	 The first parameter is a string that represents the name of 	
	 the property to set.

n	 The second parameter is a string that represents the value 	
	 to set to the property.

This is demonstrated in the following code sample:

	 HtmlDocument document = HtmlPage.Document;

	 HtmlElement myHtmlElement =

	 document.GetElementById("myHtmlElement");

	 myHtmlElement.SetProperty("innerText", "Hello, HTML");

This code sample sets the innerText property of an imaginary
HTML element to “Hello, HTML”. Essentially, imagine setting
the text of a span named “myHtmlElement” to “Hello, World”.
This is what the code sample accomplishes. Significantly, this
approach is applicable to any element in a web page.

The previous table shows the two methods that can be
used to find items within a web page. To demonstrate how
to find an individual item, please look at the following
code sample:

	 HtmlDocument document = HtmlPage.Document;

	 HtmlElement myHtmlElement =

	 document.GetElementById("myHtmlElement");

This element was assumed to be named “myHtmlElement”.
This name needs to be the id of an element within the host-
ing web page. Once we have retrieved the element though,
we can actually set any of the properties that define it.

The HtmlPage class is the core element to use when working
with the HTML DOM. This statically visible class exposes a
variety of properties that give you access to the key items of
a web page. These properties are listed and described in the
following table.

The properties listed in the previous table serve as entry points
into the HTML world. The main entry point we will use in this
section is provided through the Document property. This
property is an HtmlDocument object which in turn gives us two
properties that serve as entry points into a web page. These
properties are listed and described in the following table.

Both of the elements listed in the previous table are actually
HtmlElement objects. An HtmlElement is an in-memory
representation of an HTML element. This means that if you
have an input tag or span element in HTML, they will both be
represented as HtmlElement objects in managed code. This
gives us the ability to work with common, useful properties from
managed code. These properties are listed in the following table.

The properties in the previous table define an HtmlElement.
An HtmlElement is a critical component of an HtmlDocument
object. This object is accessible through the statically visible
HtmlPage class. With this class in hand we can perform a
number of valuable tasks. Not the least of which include:
finding HTML elements, setting element properties, setting
CSS information, and managing state information.

Property Description

BrowserInformation Gives us access to the user’s browser information.

Document This is an HtmlDocument object that represents a web
page. This specific property represents the web page
hosting the calling Silverlight application.

Plugin This is an HtmlElement that represents the HTML element
that is hosting the running Silverlight application.

Window Gives us access to the user’s browser window.
This will be demonstrated shortly.

Property Description

Children A collection of HtmlElement items that are hosted by the
current HtmlElement.

CssClass The name of the CSS (Cascading Style Sheet) class in use by
the HtmlElement.

Id The unique identifier of the HtmlElement.

Parent The HtmlElement that hosts the calling item. If the calling
item is the DocumentElement, this value will be null.

TagName The name of the tag used by the HtmlElement.

Property Description

DocumentElement This property represents the root element of the HTML
DOM. Because of this, it always represents the “HTML”
element of a web page.

Body This property gives us immediate access to the contents of
the “BODY” element of a web page.

Property Description

GetElementById Empowers us to find any element within an
HtmlDocument by referencing its unique identifier.
If the element is found, an object-oriented version of
the element, known as an HtmlElement, is returned.
If the element is not found, null will be returned.

GetElementsByTagName Finds all of the elements with a specified tag
name. The results are returned as a collection of
HtmlElement items.

Hot
Tip

Be aware of what values you pass to the SetProperty method. For instance, it doesn’t make sense to set the

“checked” property on a select tag (the select element doesn’t have a “checked” property, but a check box does).

However, with the flexibility of CSS, we do not have to be as careful when setting CSS information.

4

DZone, Inc. | www.dzone.com

Silverlight 2
 tech facts at your fingertips

Setting CSS Information

In addition to setting properties, we can also set an HTML
element’s style information from managed code. This can
be accomplished by using the SetStyleAttribute method.
This method takes two string parameters:

n	 The first parameter specifies the CSS property we want to set.

n	 The second parameter signals the value we want to set the 	
	 property to.

This approach is demonstrated on a fictional span in the
following sample:

 	 	 HtmlDocument document = HtmlPage.Document;

		 HtmlElement myHtmlElement =

		 document.GetElementById("myHtmlElement");

		 myHtmlElement.SetStyleAttribute("color", "green");

This basic code sample changes the text color of an assumed
span to green. This demonstrates how to set the CSS infor-
mation of an HtmlElement. This object also allows us to set
the properties that separate it from other elements in a web
page. This web page is represented as an HtmlDocument.
This web page may have information that is specific to the
current request. For instance, the web page may display
information specific to an individual customer or order.
These types of situations are often times exposed through
state variables.

Managing State Variables

State variables allow you to store information across page post
backs. While Silverlight is a client-side platform that helps to
alleviate post backs, you may still run into them. The reason
why is simply because a Silverlight application is hosted within
a web page. Either way, you can read state-related information
through the two properties shown in the following table.

The two properties shown in the previous table are part
of the HtmlDocument class. These two properties can be
very useful in integration scenarios. In addition, these types
of scenarios may have pre-existing JavaScript that can be
used. Fortunately, Silverlight gives you the flexibility to call
JavaScript from managed code.

Calling JavaScript from managed code is especially useful if
you are attempting to integrate Silverlight into a pre-existing
web application. For instance, let’s pretend you have a
JavaScript function called “myJSFunction”. You could call
this JavaScript function from managed code using the Invoke

method as shown here:

	 HtmlWindow window = HtmlPage.Window;

	 window.Invoke("myJSFunction", new object[]{});

CALLING JAVASCRIPT FROM MANAGED CODE

Property Description

Cookies A string that gives you the ability to manage the cookies
associated with a page.

QueryString A dictionary of the key/value pairs associated with a page’s
query string.

Hot
Tip

Silverlight does not have a print feature built-in.

However, if you need to print the contents of

a screen, you can use the browser window's

built-in print function. This can be accomplished

from managed code by using the following:

HtmlWindow window = HtmlPage.Window;

window.Invoke("print", new object[]{});

The Invoke method takes two parameters:

n	 The first parameter is the name of the JavaScript function to 	
	 execute. Notice that this value does not include the opening 	
	 and closing parenthesis associated with a function call.
n	 The second parameter is an object array that stores the 	
	 parameters to pass to the function. Thus, if “myJSFunction” 	
	 expected the date and time as parameters, you could pass 	
	 them using the following:

This approach is demonstrated on a fictional span in the
following sample:

 	 	 HtmlWindow window = HtmlPage.Window;

		 window.Invoke("myJSFunction",

 			 new object[] {DateTime.Now.Date,

			 DateTime.Now.TimeOfDay});

After the JavaScript function has been invoked, the result
will be returned back to the managed code. The result will
be available as an object. This gives you the flexibility to
interact with any existing JavaScript function.

Silverlight gives us the flexibility to work with a user’s browser
window through the HtmlWindow class. An instance of this
class can be obtained from the statically visible Window
property of an HtmlPage. Once retrieved, we can use this
object to navigate the user to another location. Alternatively,
we can actually use the browser window to display some
valuable prompts to a user.

Navigating the Browser

Navigating the browser window is an important part of
the hyperlinked world of the internet. Because of this, the
HtmlWindow class exposes two methods to address navigation:

ACCESSING THE USER’S BROWSER WINDOW

Hot
Tip

When setting style attributes from managed

code, you must use the scripting naming ap-

proach instead of the CSS naming approach to

reference a style attribute. For instance, if you

wanted to set the background color of an HTML

element, you would need to use ‘background-

Color’ instead of ‘background-color’.

5

DZone, Inc. | www.dzone.com

Silverlight 2
 tech facts at your fingertips

Accessing the User’s Browser Window, continued

n	 One method is designed to be used with a location within 	
	 the current page.

n	 The other method is intended to be used to go to other 	
	 locations on the internet.

Either way, both of these methods are described in the
following table:

The two methods listed in the previous table ensure that your
Silverlight application isn’t isolated. In order to escape from
an island of isolation, you can use the following code to go to
another page on the internet.

	 Uri uri =

 		 new Uri("http://www.manning.com/affiliate/

		 idevaffiliate.php?id=513_100");

	 HtmlWindow window = HtmlPage.Window;

	 window.Navigate(uri, "_blank");

This code sample will open a web page in a new browser window.
In addition to performing basic navigation though, we can also
use the browser to display prompts.

Prompting the User

The HtmlWindow class gives us the ability to provide prompts
through the user's browser window. These prompts are listed
and described in the following table.

The prompt options shown may be familiar to you. They mimic
the prompt options found in the HTML DOM Window object.
Either way, in order to deliver a prompt from C#, you can use
code like the following:

	 HtmlWindow window = HtmlPage.Window;

	 window.Alert(DateTime.Now.ToString());

This code snippet simply displays the current date and time to
the user. That’s all there is to it. These kinds of prompts are a valu-
able part of the browser environment. Equally valuable and useful
though is the information associated with the browser itself.

Collecting Browser Information

As a web developer, you may have witnessed how HTML
content sometimes renders differently on different browsers
and platforms. However, Silverlight content is designed to
render consistently across different browsers and platforms.
But, if you are editing the HTML DOM through Silverlight,
you will still need to take these browser differences into
consideration. Fortunately, the BrowserInformation class gives
us access to this information through the following properties.

With these properties, you can easily account for differences
between browsers. For instance, absolutely positioning an
element in an HTML page is a common pain point across
browsers. To do this from Silverlight, you can do something
like the following:

	 // Retrieve an html element

	 HtmlDocument document = HtmlPage.Document;

	 HtmlElement element = document.GetElementById

	 ("myHtmlElement");

	 // Absolutely position it based on the browser

	 BrowserInformation bi = HtmlPage.BrowserInformation;

	 if (bi.Name == "Internet Explorer")

 		 element.SetStyleAttribute("top", "300px");

	 else

 		 element.SetStyleAttribute("top", "305px");

As you can imagine, the BrowserInformation class is an
important part of working with the HTML DOM. Perhaps an
even more powerful part of the HTML DOM API though is the
HtmlWindow. This API also allows you to manage the HTML
DOM from managed code. On the contrary, you can expose
your managed code to the HTML DOM. No matter the direction
you want to go, Silverlight can help you get there. You can find
out more about the incredibly powerful Silverlight platform in
the book Silverlight 2 in Action.

Method Description

Alert(…) Shows a single message in an HTML alert window.

Confirm(…) Prompts the user to agree or disagree with a statement or
question. This prompt displays two buttons: OK and Cancel.
The text of these buttons cannot be customized. If a user
selects OK, this method will return true. However, if a user
selects Cancel, this method will return false.

Prompt(…) Creates a dialog window that displays a single message. In
addition, this dialog displays a single text box that the user can
enter information into. If the user selects the OK button from
this dialog window, the value of that text box will be returned
as a string. Otherwise, if a user selects Cancel or exits the
window, null will be returned.

Property Description

BrowserVersion Stores the major, minor, build, and revision information of a
browser. This information is available as a System.Version
class instance.

CookiesEnabled A bool value that retrieves whether or not the user has enabled
cookies in their browser.

Name The name of the browser that the user is using (i.e. “Microsoft
Internet Explorer” or “Netscape”).

Platform A string that identifies the operating system the user is using
(i.e. “Win32”).

UserAgent The value of the user-agent header that will be sent from the
browser to the server.

Method Description

Navigate(…) This method will redirect the browser window to the
provided URI. This URI can be loaded in an optional target
window. The specifications of this target window can be set
via an optional third parameter. The name and specification
of the target window parameters match those used by the
HTML DOM window.open function.

NavigateToBookmark(…) This method is used to navigate to a location within the
current HTML page. This location must be defined by an
anchor tag with the web page.

Hot
Tip

Be careful when using the Navigate method.
If you redirect your user away from the current
web page in the current browser window, your
Silverlight application will be unloaded. This may

not be what you have intended. Because of this, you may
want to consider using the “blank” value as the target window.

ABOUT THE AUTHOR

Silverlight 2
6

Silverlight 2 in Action is the
first book to cover Silverlight
2, a far more robust imple-
mentation of Silverlight than
the current 1 release that
supports only JavaScript. The
much-anticipated 2 release
adds powerful new features
along with the ability to code

in multiple languages and integrate your work with
Visual Studio and the new Expression suite of tools.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/silverlight

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Silverlight 2 in Action, Chad Campbell and John Stockon, Manning Publications MEAP Release October 2007.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-11-0
ISBN-10: 1-934238-11-2

9 781934 238110

5 0 7 9 5

Chad A. Campbell
Chad Campbell is a Microsoft MVP and solutions architect. He has been
developing enterprise-level web applications with a wide variety of tech-
nologies since 1999. Beginning with the initial public release of what would
become Silverlight in 2006, Chad hit the ground running and has not looked
back. He holds MCSD and MCTS certifications. In addition, Chad has a BS
degree from Purdue University where he focused his studies on computer
science and minored in psychology.

Publication
Silverlight 2 in Action (Manning)

Blog
http://cornucopia30.blogspot.com/

Twitter Feed
http://twitter.com/chadcampbell

Resource URL

Experience Silverlight http://silverlight.net/Showcase/

Get Started with Silverlight http://silverlight.net/GetStarted/

Go Deeper with Silverlight: Silverlight
2 in Action by Chad Campbell and
John Stockton

http://books.dzone.com/books/silverlight

Resource URL

Stay Connected
with Silverlight:
Popular Silverlight
RSS Feeds

http://silverlight.net/blogs/community/rss.aspx

http://feeds.feedburner.com/JesseLiberty-SilverlightGeek

http://feeds.timheuer.com/timheuer

RESOURCES

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Esential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

