Modular forms, modular symbols

(PARI-GP version 2.11.0)

Modular Forms

Dirichlet characters

Characters are encoded in three different ways: • a t_INT $D \equiv 0, 1 \mod 4$: the quadratic character (D/\cdot) ; • a t_INTMOD Mod $(m,q), m \in (\mathbb{Z}/q)^*$ using a canonical bijection with the dual group (the Conrey character $\chi_q(m, \cdot)$); • a pair [G, chi], where G = znstar(q, 1) encodes $(\mathbf{Z}/q\mathbf{Z})^* =$ $\sum_{j \leq k} (\mathbf{Z}/d_j \mathbf{Z}) \cdot g_j$ and the vector $chi = [c_1, \ldots, c_k]$ encodes the character such that $\chi(q_i) = e(c_i/d_i)$.

initialize $G = (\mathbf{Z}/q\mathbf{Z})^*$ G = znstar(a, 1)convert datum D to $[G, \chi]$ $\operatorname{znchar}(D)$ Galois orbits of Dirichlet characters chargalois(G)Spaces of modular forms Arguments of the form $[N, k, \chi]$ give the level weight and nebentypus χ ; χ can be omitted: [N, k] means trivial χ . $\begin{array}{l} \operatorname{initialize} S_k^{\operatorname{new}}(\Gamma_0(N),\chi)\\ \operatorname{initialize} S_k(\Gamma_0(N),\chi)\\ \operatorname{initialize} S_k^{\operatorname{old}}(\Gamma_0(N),\chi)\\ \operatorname{initialize} S_k^{\operatorname{old}}(\Gamma_0(N),\chi)\\ \end{array}$ $mfinit([N, k, \chi])$ $mfinit([N, k, \chi], 1)$ $mfinit([N, k, \chi], 2)$ $mfinit([N, k, \chi], 3)$ initialize $M_k(\Gamma_0(N), \chi)$ $mfinit([N, k, \chi], 4)$ find eigenforms mfsplit(M)statistics on self-growing caches getcache() We let $M = \text{mfinit}(\ldots)$ denote a modular space. describe the space Mmfdescribe(M)recover (N, k, χ) mfparams(M) \dots the space identifier (0 to 4) mfspace(M) \dots the dimension of M over \mathbf{C} mfdim(M)... a **C**-basis (f_i) of M mfbasis(M)...a basis (F_i) of eigenforms mfeigenbasis(M)... polynomials defining $\mathbf{Q}(\chi)(F_i)/\mathbf{Q}(\chi)$ mffields(M)matrix of Hecke operator T_n on (f_i) mfheckemat(M, n)mfatkineigenvalues(M, Q)eigenvalues of w_{Ω} basis of period poynomials for weight kmfperiodpolbasis(k)basis of the Kohnen +-space mfkohnenbasis(M)... new space and eigenforms mfkohneneigenbasis(M, b)isomorphism $S_k^+(4N,\chi) \to S_{2k-1}(N,\chi^2)$ mfkohnenbijection(M) Useful data can also be obtained a priori, without computing a complete modular space: dimension of $S_k^{\text{new}}(\Gamma_0(N), \chi)$ dimension of $S_k(\Gamma_0(N), \chi)$ $mfdim([N, k, \chi])$ $mfdim([N, k, \chi], 1)$

dimension of $S_k^{\text{old}}(\Gamma_0(N), \chi)$	$\texttt{mfdim}([N,k,\chi],2)$	
dimension of $M_k(\Gamma_0(N), \chi)$	$\texttt{mfdim}([N,k,\chi],3)$	
dimension of $E_k(\Gamma_0(N), \chi)$	$\texttt{mfdim}([N,k,\chi],4)$	
Sturm's bound for $M_k(\Gamma_0(N), \chi)$	mfsturm(N,k)	
$\Gamma_0(N)$ cosets		
list of right $\Gamma_0(N)$ cosets	${\tt mfcosets}(N)$	
identify coset a matrix belongs to	mftocoset	
Cusps		
a cusp is given by a rational number or oo .		
lists of cusps of $\Gamma_0(N)$	$\mathtt{mfcusps}(N)$	
number of cusps of $\Gamma_0(N)$	${\tt mfnumcusps}(N)$	
width of cusp c of $\Gamma_0(N)$	${\tt mfcuspwidth}(N,c)$	
is cusp c regular for $M_k(\Gamma_0(N), \chi)$?	$\texttt{mfcuspisregular}([N,k,\chi],c)$	

Create an individual modular form

Create an marviatar modular form	
Besides mfbasis and mfeigenbasis, an	individual modular form
can be identified by a few coefficients.	
modular form from coefficients	mftobasis(mf, vec)
There are also many predefined ones:	
	mfEk(k)
Eisenstein series E_k on $Sl_2(\mathbf{Z})$ Eisenstein Hummitz cories on $\Gamma_k(4)$	
Eisenstein-Hurwitz series on $\Gamma_0(4)$	mfEH(k)
unary θ function (for character ψ)	$mfTheta(\{\psi\})$
Ramanujan's Δ	mfDelta()
$E_k(\chi)$	mfeisenstein (k,χ)
$E_k(\chi_1,\chi_2)$	mfeisenstein (k, χ_1, χ_2)
eta quotient $\prod_i \eta (a_{i,1} \cdot z)^{a_{i,2}}$	mffrometaquo(a)
newform attached to ell. curve E/\mathbf{Q}	$\mathtt{mffromell}(E)$
identify an L -function as a eigenform	${\tt mffromlfun}(L)$
θ function attached to $Q>0$	$\mathtt{mffromqf}(Q)$
trace form in $S_k^{\text{new}}(\Gamma_0(N),\chi)$	$mftraceform([N, k, \chi])$
trace form in $S_k^{\text{new}}(\Gamma_0(N), \chi)$ trace form in $S_k(\Gamma_0(N), \chi)$	$mftraceform([N, k, \chi], 1)$
Operations on modular forms	
In this section, f, g and the $F[i]$ are mod	ular forms
$f \times g$	$\mathtt{mfmul}(f,g)$
f/g	mfdiv(f,g)
f^n	mfpow(f, n)
$\int f(q)/q^v$	mfshift(f, v)
	mflinear(F,L)
$\sum_{\substack{i \leq k \\ j = -2}} \lambda_i F[i], \ L = [\lambda_1, \dots, \lambda_k]$	
J = g:	<pre>mfisequal(f,g) </pre>
expanding operator $B_d(f)$	mfbd(f, d)
Hecke operator $T_n f$	mfhecke(mf, f, n)
initialize Atkin–Lehner operator w_Q	mfatkininit(mf, Q)
apply w_Q to f	$mfatkin(w_Q, f)$
twist by the quadratic char (D/\cdot)	mftwist(f, D)
derivative wrt. $q \cdot d/dq$	mfderiv(f)
see f over an absolute field	mfreltoabs(f)
Serre derivative $\left(q \cdot \frac{d}{dq} - \frac{k}{12}E_2\right)f$	mfderivE2(f)
Rankin-Cohen bracket $[f,g]_n$	${\tt mfbracket}(f,g,n)$
Shimura lift of f for discriminant D	${\tt mfshimura}(mf,f,D)$
Properties of modular forms	
In this section, $f = \sum_n f_n q^n$ is a modula	ar form in some space M
with parameters N, \overline{k}, χ .	
describe the form f	mfdescribe(f)
(N, k, χ) for form f	mfparams(f)
the space identifier $(0 \text{ to } 4)$ for f	mfspace(mf, f)
$[f_0,\ldots,f_n]$	mfcoefs(f, n)
f_n	$\mathtt{mfcoef}(f,n)$
is f a CM form?	mfisCM(f)
Galois rep. attached to $(1, \chi)$ -eigenform	mfgaloistype(M, F)
Galois rep. attached to $(1, \chi)$ eigenform Galois rep. attached to all $(1, \chi)$ eigenform	
decompose f on mfbasis(M)	
	mftobasis(M, f)
smallest level on which f is defined decomposed f on $\oplus S^{\text{new}}(\Gamma_{+}(d))$ $d \models N$	mfconductor(M, f)
decompose f on $\oplus S_k^{\text{new}}(\Gamma_0(d)), d \mid N$	mftonew(M, f)
valuation of f at cusp c	mfcuspval(M, f, c)
	ashexpansion (M, f, γ, n)
n-Taylor expansion of f at i	mftaylor(f, n)
all rational eigenforms matching criteria	mfeigensearch
forms matching criteria	mfsearch

Forms embedded into C

Given a modular form f in $M_k(\Gamma_0(N), \chi)$ its field of definition Q(f)has $n = [Q(f) : Q(\chi)]$ embeddings into the complex numbers. If n = 1, the following functions return a single answer, attached to the canonical embedding of f in $\mathbf{C}[[q]]$; else a vector of n results, corresponding to the n conjugates of f. complex embeddings of Q(f)mfembed(f) \dots embed coefs of fmfembed(f, v)evaluate f at $\tau \in \mathcal{H}$ $mfeval(f, \tau)$

L-function attached to f \dots eigenforms of new space M

eigemornis of new space m	
Periods and symbols	
The functions in this section depend on	$[Q(f) : Q(\chi)]$ as above.
initialize symbol fs attached to f	${\tt mfsymbol}(M,f)$
evaluate symbol fs on path p	${\tt mfsymboleval}(fs,p)$
Petersson product of f and g	${\tt mfpetersson}(fs,gs)$
period polynomial of form f	${\tt mfperiodpol}(M, fs)$
period polynomials for eigensymbol FS	mfmanin(FS)

lfunmf(mf, f)

lfunmf(M)

Modular Symbols

matrix of the * involution

Let $G = \Gamma_0(N)$, $V_k = \mathbf{Q}[X,Y]_{k-2}$, $L_k = \mathbf{Z}[X,Y]_{k-2}$. We let $\Delta = \text{Div}^0(\mathbf{P}^1(\mathbf{Q}))$; an element of Δ is a *path* between cusps of $X_0(N)$ via the identification $[b] - [a] \rightarrow$ the path from *a* to *b*. A path is coded by the pair [a, b], where *a*, *b* are rationals or oo, denoting the point at infinity (1:0).

Let $\mathbf{M}_k(G) = \operatorname{Hom}_G(\Delta, V_k) \simeq H^1_c(X_0(N), V_k)$; an element of $\mathbf{M}_k(G)$ is a V_k -valued modular symbol. There is a natural decomposition $\mathbf{M}_k(G) = \mathbf{M}_k(G)^+ \oplus \mathbf{M}_k(G)^-$ under the action of the * involution, induced by complex conjugation. The msinit function computes either \mathbf{M}_k ($\varepsilon = 0$) or its \pm -parts ($\varepsilon = \pm 1$) and fixes a minimal set of $\mathbf{Z}[G]$ -generators (g_i) of Δ .

initialize $M = \mathbf{M}_k(\Gamma_0(N))^{\varepsilon}$ the level M the weight k the sign ε Farey symbol attached to G	$\begin{split} \texttt{msinit}(N,k,\{\varepsilon=0\}) \\ \texttt{msgetlevel}(M) \\ \texttt{msgetweight}(M) \\ \texttt{msgetsign}(M) \\ \texttt{mspolygon}(M) \end{split}$	
$\mathbf{Z}[G]$ -generators (g_i) and relations for Δ decompose $p = [a, b]$ on the (g_i)	$ \begin{array}{l} \texttt{mspathgens}(M) \\ \texttt{mspathlog}(M,p) \end{array} $	
Create a symbol Eisenstein symbol attached to cusp c cuspidal symbol attached to E/\mathbf{Q} symbol having given Hecke eigenvalues is s a symbol ?	$\begin{array}{l} \texttt{msfromcusp}(M,c)\\ \texttt{msfromell}(E)\\ \texttt{msfromhecke}(M,v,\{H\})\\ \texttt{msissymbol}(M,s) \end{array}$	
Operations on symbols the list of all $s(g_i)$ evaluate symbol s on path $p = [a, b]$ Petersson product of s and t	$\begin{array}{l} \texttt{mseval}(M,s) \\ \texttt{mseval}(M,s,p) \\ \texttt{mspetersson}(M,s,t) \end{array}$	
Operators on subspaces An operator is given by a matrix of a fixed Q -basis. H , if given, is a stable Q -subspace of $\mathbf{M}_k(G)$: operator is restricted to H . matrix of Hecke operator T_p or U_p mshecke $(M, p, \{H\})$		
matrix of Atkin-Lehner w_Q	msatkinlehner $(M, Q\{H\})$	

Subspaces A subspace is given by a structure allowing quick projection and restriction of linear operators. Its fist component is a matrix with integer coefficients whose columns for a **Q**-basis. If H is a Heckestable subspace of $M_k(G)^+$ or $M_k(G)^-$, it can be split into a direct sum of Hecke-simple subspaces. To a simple subspace corresponds a single normalized newform $\sum a_m a^n$.

 $msstar(M, \{H\})$

a single normalized new form $\Delta n a n q$.		
cuspidal subspace $S_k(G)^{\varepsilon}$	nscuspidal(M)	
Eisenstein subspace $E_k(G)^{\varepsilon}$	${\tt nseisenstein}(M)$	
new part of $S_k(G)^{\varepsilon}$	$\mathtt{nsnew}(M)$	
split H into simple subspaces (of dim $\leq d$) m	$\mathtt{nssplit}(M,H,\{d\})$	
dimension of a subspace n	$\mathtt{nsdim}(M)$	
(a_1, \ldots, a_B) for attached newform msqex	$\operatorname{rpansion}(M, H, \{B\})$	
Z -structure from $H^1(G, L_k)$ on subspace A mslattice (M, A)		
Z -structure from $H^1(G, L_k)$ on subspace A mslattice(M, A)		

Overconvergent symbols and *p*-adic *L* functions

Let M be a full modular symbol space given by msinit and p be a prime. To a classical modular symbol ϕ of level N ($v_p(N) \leq 1$), which is an eigenvector for T_p with non-zero eigenvalue a_p , we can attach a p-adic L-function L_p . The function L_p is defined on continuous characters of Gal($\mathbf{Q}(\mu_{p^{\infty}})/\mathbf{Q}$); in GP we allow characters $\langle \chi \rangle^{s_1 \tau^{s_2}}$, where (s_1, s_2) are integers, τ is the Teichmüller character and χ is the cyclotomic character.

The symbol ϕ can be lifted to an *overconvergent* symbol Φ , taking values in spaces of *p*-adic distributions (represented in GP by a list of moments modulo p^n).

mspadicinit precomputes data used to lift symbols. If flag is given, it speeds up the computation by assuming that $v_p(a_p) = 0$ if flag = 0 (fastest), and that $v_p(a_p) \geq flag$ otherwise (faster as flag increases).

mspadicmoments computes distributions mu attached to Φ allowing to compute L_p to high accuracy.

initialize Mp to lift symbols	$mspadicinit(M, p, n, \{flag\})$
lift symbol ϕ	$\texttt{mstooms}(Mp,\phi)$
eval over convergent symbol Φ o	n path p msomseval (Mp, Φ, p)
mu for p -adic L -functions	$mspadicmoments(Mp, S, \{D = 1\})$
$L_p^{(r)}(\chi^s), s = [s_1, s_2]$	$\texttt{mspadicL}(mu, \{s=0\}, \{r=0\})$
$\hat{L}_p(\tau^i)(x)$	$mspadicseries(mu, \{i = 0\})$

Based on an earlier version by Joseph H. Silverman July 2018 v2.35. Copyright © 2018 K. Belabas Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to (Karim.Belabas@math.u-bordeaux.fr)