
Integers
n 2n Hex Binary n 2n

0 1 0x00 00000 17 131072
1 2 0x01 00001 18 262144
2 4 0x02 00010 19 524288
3 8 0x03 00011 20 1048576
4 16 0x04 00100 21 2097152
5 32 0x05 00101 22 4194304
6 64 0x06 00110 23 8388608
7 128 0x07 00111 24 16777216
8 256 0x08 01000 25 33554432
9 512 0x09 01001 26 67108864
10 1024 0x0A 01010 27 134217728
11 2048 0x0B 01011 28 268435456
12 4096 0x0C 01100 29 536870912
13 8192 0x0D 01101 30 1073741824
14 16384 0x0E 01110 31 2147483648
15 32768 0x0F 01111 32 4294967296
16 65536 0x10 10000 33 8589934592

• Word size – nominal size of pointer data
• Addresses go up to 2w − 1 for w-bit word size
• Little Endian – least significant byte comes first
• Big Endian – most significant byte comes first
• Example of storing 0x1234567 at 0x100

0x100 0x101 0x102 0x103

Big endian 01 23 45 67

Little endian 67 45 23 01

• Arithmetic between signed and unsigned values automat-
ically casts all signed values to unsigned
• −TMinw = TMinw

• dx/2ke is given by (x + (1 << k) - 1) >> k

• x/2k is given by (x<0 ? x+(1<<k)-1 : x) >> k

Word size w
Value 8 16 32

UMaxw 0xFF 0xFFFF 0xFFFFFFFF

255 65,535 4,294,967,295
TMinw 0x80 0x8000 0x80000000

−128 −32, 768 −2, 147, 483, 648
TMaxw 0x7F 0x7FFF 0x7FFFFFFF

127 32, 767 2, 147, 483, 647
−1 0xFF 0xFFFF 0xFFFFFFFF

Bitwise Operations
• Logical shift – Fills left end with zeros
• Arithmetic shift – Sign-extends left end

~

0 1
1 0

& 0 1
0 0 0
1 0 1

| 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

Floating Point
• Floating point lacks associativity
• V = (−1)s ×M × 2E

• Sign bit s – whether the number is positive or negative,
represented by 1-bit field

• Exponent E weights the value by a possibly negative
power of 2, represented by k-bit exp field

• Significand (mantissa) M – fractional binary number be-
tween 1 and 2− ε or between 0 and 1− ε, represented by
n-bit frac field (fn−1 · · · f1f0)

• Normalized values

– Most common case
– exp is neither all zeros nor all ones
– Exponent field represents biased signed integer
– E = e−Bias where e is the unsigned number in exp

and Bias = 2k−1 − 1
– frac represents 0 ≤ f < 1 with 0.fn−1 · · · f1f0 and

M = 1 + f – implied leading 1

• Denormalized values

– Exponent field all zeros
– Exponent value is E = 1−Bias, significand value is

M = f (no leading 1)
– Numbers close to zero (inclusive), evenly spaced near

0.0

• Special values

– Exponent field is all ones
– Fraction field all zeros can represent ±∞, depending

on sign bit
– Nonzero fraction field is NaN

• Rounding

– Rounds to the nearest even
– BBGRXXXX

– G – Guard bit; least significant bit of result
– R – Round bit; first bit removed
– XXXX – Sticky bit; OR of remaining bits
– Round up conditions:

∗ Round = 1, Sticky = 1 → > 0.5
∗ Guard = 1, Round = 1, Sticky = 0 → Round

to even

• Multiplication

– (−1)s1M12E1 × (−1)s2M22E2

= (−1)s1ˆs2(M1 ×M2)2E1+E2

– If M1 × M2 = M ≥ 2 shift M right, increment
E = E1 + E2

– If E out of range, overflow
– Round M to fit frac precision

x86-64 Data Alignment
• Internal padding – added between struct elements
• External padding – added after struct elements
• The entire struct is externally padded to align to its

largest element

K Types
1 char

2 short

4 int, float

8 long, double, char *

Caches
• M = 2m unique addresses of m bits
• S = 2s cache sets
• Each set consists of E cache lines
• Each line consists of a data block of B = 2b bytes, a valid

bit and t = m− (b + s) tag bits
• Capacity of a cache is C = S × E ×B
• Address

t bits s bits b bits
← m− 1 0→

Tag Set index Block offset

• Direct-mapped cache has one line per set (E = 1)
• Non-direct caches sometimes referred to as E-way set

associative cache
• Fully-associative cache has one set (E = C/B).

Conditional Control
• Carry flag (CF) – most recent op generated carry of most

significant bit, detects overflow for unsigned
• Zero flag (ZF) – most recent op yielded zero
• Sign flag (SF) – most recent op yielded negative value
• Overflow flag (OF) – most recent op caused two’s comple-

ment overflow
• test instruction behaves like and instructions but sets

condition codes without altering source or destination
often see testq %rax,%rax to check if return val is neg,
zero, or pos

set D and jmp suffixes
Instruction Syn. Cond. Desc.

-e -z ZF = /0
-ne -nz ~ZF ! =/not zero
-s SF Neg
-ns ~SF Nonneg
-g -nle ~(SF^OF)&~ZF signed >
-ge -nl ~(SF^OF) signed =>
-l -nge SF^OF signed <
-le -ng (SF^OF)|ZF signed <=
-a -nbe ~CF&~ZF unsigned >
-ae -nb ~CF unsigned >=
-b -nae CF unsigned <
-be -na CF|ZF unsigned <=

Assembly Basics
• “word” refers to 16-bit data type, with “double word”

referring to 32-bit (int) and 64-bit quantities referred to
as “quad words”

• On 64-bit machines pointers are 8-byte quad words
• 16 general purpose registers storing 64-bit values (register

file)
• In operands, scaling factor s must be either 1, 2, 4, or 8
• mov S, D has the effect of S → D
• movzbq moves from byte to quad with zero-extended

whereas movsbq does the same but sign-extended
• Stack grows down if increasing addresses grow up – “top”

of the stack at the bottom
• leaq S, D has the effect of &S → D

Type Form Operand value
Immediate $Imm Imm
Register ra R[ra]
Memory Imm(rb, ri, s) M[Imm + R[rb] + R[ri] · s]

Type 64-bits 32-bits 16-bits 8-bits
Return val %rax %eax %ax %al

Callee %rbx %ebx %bx %bl

1st arg %rdi %edi %di %dil

2nd arg %rsi %esi %si %sil

3rd arg %rdx %edx %dx %dl

4th arg %rcx %ecx %cx %cl

5th arg %r8 %r8d %r8w %r8b

6th arg %r9 %r9d %r9w %r9b

Callee %rbp %ebp %bp %bpl

Stack ptr %rsp %esp %sp %spl

Caller %r10 %r10d %r10w %r10b

Caller %r11 %r11d %r11w %r11b

Callee %r12 %r12d %r12w %r12b

Callee %r13 %r13d %r13w %r13b

Callee %r14 %r14d %r14w %r14b

Callee %r15 %r15d %r15w %r15b

Linking
• Relocatable object files – combine with other relocatables

at compile time to create executables, made by compiler
and assembler

• Executable object files – contain binary data that can be
directly copied to memory and executed, made by linker

• Shared object files – special relocatable objects that can
be linked dynamically at load or run time

• Static symbols – defined locally to an object file (module)
• Global symbols – defined locally and referred to elsewhere
• Externals – Global symbols referenced locally but defined

elsewhere
• Local linker symbols are different from local program

variables
• Functions and initialized global variables are exported to

the assembler as strong by the compiler
• Uninitialized global variables are weak
• Linkers error on multiple same-name strong symbols, pick

strong over weak, and randomly choose from weak symbols

Processes
• getpid(void) – pid t of the process
• getppid(void) – pid t of the parent process
• Processes are running, stopped, or terminated
• exit(int status) – called once, never returns
• fork(void) – pid t of child in parent or 0 if in child;

called once, returns twice
• Open file table and vnode table are managed by OS and

shared across processes, file descriptor table is process-
specific
• waidpid(pid t pid, int *statusp, int options) –

returns pid t of child, 0 if not waiting (WNOHANG) or error

– WNOHANG – return (0) immediately and don’t wait
for child

– WUNTRACED – check for terminated and stop children
– WCONTINUED – check for waiting (child) process to

be continued
– OR (|) flags together to form a bit vector
– WIFEXITED(status) – whether child exited normally
– WEXITSTATUS(status) – returns exit status of ter-

minated child if WIFEXITED is true
– WIFSIGNALED & WTERMSIG – as above but for signals
– WIFSTOPPED & WSTOPSIG & WIFCONTINUED – as

above for stopped/continued processes

• wait(int *statusp) ∼= waitpid(-1, &status, 0)

• sleep(unsigned int secs) – returns short counts
• pause(void) – sleeps until a signal is received
• execve(char *filename, char *argv[], char

*envp[]) – does not return unless error; last arg
in each array is NULL

Virtual Memory
• N = 2n addresses in n-bit virtual address space
• M = 2m addresses in m-bit physical address space (not

necessarily power of 2)
• P = 2p bytes per virtual/physical page
• Virtual pages are either unallocated, cached (allocated in

PM), or uncached (allocated, not in PM)
• DRAM caches are often fully associative
• Page table maps virtual pages to physical pages
• Valid bit in PTE set indicates cached in PM, rest indicates

virtual or physical address (depending on valid bit)
• Page fault is DRAM cache miss; triggers exception
• Translation lookaside buffer (TLB) is a cache of PTEs;

each line holds a block with one PTE; highly associative
• TLB has T = 2t sets
• Virtual address

Virtual Page Number
← n− 1 ← p + t | p→ 0→
TLB Tag TLB index Virtual page offset

Dynamic Memory Allocation
• sbrk(intptr t incr) – extend the heap by incr (basi-

cally just an int) and return the old break pointer

Signals
• Default action of SIGCHLD, SIGCONT, SIGSTOP,

SIGTSTP is to ignore and stop (respectively per pair)
• Signals can be sent to process groups; child inherits parent

process group by default; setpgid(0, 0) sets the process
group ID to the current process id

• kill(pid t pid, int sig) – send a sig to pid, unless
pid is 0 then send it to every process in the process group
of the calling process; if pid < 0, send to every process
in process group |pid|

• signal(int sig, void *hndlr t (int) handler) –
handle sig with handler function pointer; handler can
be SIG IGN to ignore or SIG DFL for default

• sigprocmask(int how, sigset t *set, sigset t

*oldset)

– SIG BLOCK – blocked = blocked | set

– SIG UNBLOCK – blocked = blocked & set

– SIG SETMASK – blocked = set

– Old bit vector stored in oldset (a.k.a. prev)

• sigemptyset(sigset t *set)

• sigfillset(sigset t *set)

• sigaddset(sigset t *set, int sig) – add sig

• sigdelset(sigset t *set, int sig) – delete sig

• Rules for signal handlers

1. Keep them simple

2. Only call async-signal-safe functions (reentrant or
uninterruptible)

3. Save and restore errno

4. Block all signals

5. Declare global variables with volatile – force mem-
ory read each time (no storage in registers)

6. Declare flags with sig atomic t – atomic r/w

• Signals are not queued
• sigsuspend(sigset t *mask) – atomically replace
blocked with mask and suspend until handler returns
after receipt of a signal, then restore blocked

Concurrency with Threads
• pthread create(pthread t *tid, NULL, void

*func(void *), void *arg) – run func with arg

in a new thread, joinable by default
• pthread self(void) – return current thread id
• pthread exit(void *return) – exit the current thread
• pthread cancel(pthread t tid) – terminate another

thread without waiting
• pthread join(pthread t tid, NULL) – block and wait

for the thread with tid to terminate
• pthread detach(pthread t tid) – make thread tid de-

tached (not joinable), often called on self
• Threads share everything in memory except for registers

and stack, though they can access addresses in other
thread stacks

System I/O
• open(char *filename, int flags, mode t mode) –

returns file descriptor

– O RDONLY, O WRDONLY, O RDWR flags
– O CREAT – create a new file if it doesn’t exist
– O TRUNC – truncate the file if it exists
– O APPEND – before write, set file pos. to end of file
– Mode given by OR (|) combination of

S I{R, W, X}{USR, GRP, OTH}
– Each call creates new open file table entry

• read(int fd, void *buf, size t n) – read up to n

bytes into buf and return the number of bytes actually
read, update file descriptor table position by return value
• write(int fd, void *buf, size t n) – write up to n

bytes from buf, return the number of bytes actually writ-
ten, update file descriptor table position by return value
• Each process has unique descriptor table pointing to en-

tries in global file table
• OS maintains open file table shared by all processes, each

entry has file position, ref count, and pointer to v-node
table
• OS maintains v-node table with information about each

file
• Parent and child process must both close file descriptors

for kernel to remove file table entry
• dup2(int oldfd, int newfd) – copies descriptor entry
oldfd to newfd, overwriting newfd (closes newfd if open);
i.e., newfd entry points to oldfd entry

Thread Synchronization
• sem init(sem t *sem, 0, int val) – initialize lock
• sem wait(sem t *sem) – P(sem); block until get lock
• sem post(sem t *sem) – V(sem); release lock
• In producer-consumer solution, producer produces when-

ever there is space in buffer, and consumer consumes
whatever is there as fast as it can
• First readers-writers problem favors readers
• Second readers-writers problem favors writers
• Readers-writers solutions can result in starvation
• Deadlock – threads are waiting for condition that will

never be true

Network Programming
• socket(int domain, int type, int protocol) –

usually AF INET, SOCK STREAM, 0, respectively; create
endpoint of connection
• connect(int clientfd, struct sockadd *addr,

socklen t addrlen) – establish connection with a
server at addr (client)
• bind(int sockfd, struct sockaddr *adrr,

socklen t addrlen) – associate server socket ad-
dress with given socket descriptor (server)
• listen(int sockfd, int backlog) – set sockfd to ac-

tively listen (server)
• accept(int listenfd, struct sockaddr *addr,

int *addrlen) – block until a connection is made then
return file descriptor for connection

Scratch work:

Created for 15-213 at Carnegie Mellon University
in Spring 2019 by Jacob Strieb.
jstrieb@alumni.cmu.edu

https://git.io/JcZ29

mailto:jstrieb@alumni.cmu.edu
https://git.io/JcZ29

	Integers
	Bitwise Operations
	Floating Point
	x86-64 Data Alignment
	Caches
	Conditional Control
	Assembly Basics
	Linking
	Processes
	Virtual Memory
	Dynamic Memory Allocation
	Signals
	Concurrency with Threads
	System I/O
	Thread Synchronization
	Network Programming

