
Learn Lua
by Seth Kenlon

We are Opensource.com

Opensource.com is a community website publishing stories about creating, adopting, and
sharing open source solutions. Visit Opensource.com to learn more about how the open
source way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Do you have an open source story to tell? Submit a story idea at opensource.com/story

Email us at open@opensource.com

http://opensource.com/story
mailto://open@opensource.com
https://www.redhat.com?sc_cid=7013a000003BkHQAA0

Table of Contents
5 steps to learn any programming language...4
Is Lua worth learning?..12
Learn Lua by writing a "guess the number" game...17
Trick Lua into becoming an object-oriented language...20
How to iterate over tables in Lua..24
Manipulate data in files with Lua..28
Parse arguments with Lua..31
Make Lua development easy with Luarocks...34
Parsing config files with Lua..39
Parsing command options in Lua...45

Seth Kenlon

Seth Kenlon is a UNIX geek, free culture advocate, independent
multimedia artist, and tabletop RPG nerd. He has worked in the
film and computing industry, often at the same time. He is one
of the maintainers of the Slackware-based multimedia
production project Slackermedia.

Creative Commons Attribution Share-alike 4.0 3

http://slackermedia.info/

5 steps to learn any programming
language

Some people love learning new programming languages. Other people can't imagine having
to learn even one. In this article, I'm going to show you how to think like a coder so that you
can confidently learn any programming language you want.

The truth is, once you've learned how to program, the language you use becomes less of a
hurdle and more of a formality. In fact, that's just one of the many reasons educators say to
teach kids to code early. Regardless of how simple their introductory language may be, the
logic remains the same across everything else children (or adult learners) are likely to
encounter later.

With just a little programming experience, which you can gain from any one of several
introductory articles here on Opensource.com, you can go on to learn any programming
language in just a few days (sometimes less). Now, this isn't magic, and you do have to put
some effort into it. And admittedly, it takes a lot longer than just a few days to learn every
library available to a language or to learn the nuances of packaging your code for delivery. But
getting started is easier than you might think, and the rest comes naturally with practice.

When experienced programmers sit down to learn a new language, they're looking for five
things. Once you know those five things, you're ready to start coding.

Creative Commons Attribution Share-alike 4.0 4

https://opensource.com/article/20/9/scratch

1. Syntax

(Seth Kenlon, CC BY-SA 4.0)

The syntax of a language describes the structure of code. This encompasses both how the
code is written on a line-by-line basis as well as the actual words used to construct code
statements.

Python, for instance, is known for using indentation to indicate where one block ends and
another one starts:

while j < rows:
 while k < columns:
 tile = Tile(k * w)
 board.add(tile)
 k += 1
 j += 1
 k = 0

Lua just uses the keyword end:

for i,obj in ipairs(hit) do
 if obj.moving == 1 then

Creative Commons Attribution Share-alike 4.0 5

https://opensource.com/article/20/2/lua-cheat-sheet
https://opensource.com/downloads/cheat-sheet-python-37-beginners
https://creativecommons.org/licenses/by-sa/4.0/

 obj.x,obj.y = v.mouse.getPosition()
 end
end

Java, C, C++, and similar languages use braces:

while (std::getline(e,r)) {
 wc++;
 }

A language's syntax also involves things like including libraries, setting variables, and
terminating lines. With practice, you'll learn to recognize syntactical requirements (and
conventions) almost subliminally as you read sample code.

Take action
When learning a new programming language, strive to understand its syntax. You don't have
to memorize it, just know where to look, should you forget. It also helps to use a good IDE,
because many of them alert you of syntax errors as they occur.

2. Built-ins and conditionals

(Seth Kenlon, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 6

https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/resources/what-ide
https://opensource.com/downloads/c-programming-cheat-sheet
https://opensource.com/downloads/java-cheat-sheet

A programming language, just like a natural language, has a finite number of words it
recognizes as valid. This vocabulary can be expanded with additional libraries, but the core
language knows a specific set of keywords. Most languages don't have as many keywords as
you probably think. Even in a very low-level language like C, there are only 32 words, such as
for, do, while, int, float, char, break, and so on.

Knowing these keywords gives you the ability to write basic expressions, the building blocks of
a program. Many of the built-in words help you construct conditional statements, which
influence the flow of your program. For instance, if you want to write a program that lets you
click and drag an icon, then your code must detect when the user's mouse cursor is positioned
over an icon. The code that causes the mouse to grab the icon must execute only if the
mouse cursor is within the same coordinates as the icon's outer edges. That's a classic if/then
statement, but different languages can express that differently.

Python uses a combination of if, elif, and else but doesn't explicitly close the statement:

if var == 1:
 # action
elif var == 2:
 # some action
else:
 # some other action

Bash uses if, elif, else, and uses fi to end the statement:

if ["$var" = "foo"]; then
 # action
elif ["$var" = "bar"]; then
 # some action
else
 # some other action
fi

C and Java, however, use if, else, and else if, enclosed by braces:

if (boolean) {
 // action
} else if (boolean) {
 // some action
} else {
 // some other action
}

Creative Commons Attribution Share-alike 4.0 7

https://opensource.com/downloads/bash-cheat-sheet

While there are small variations in word choice and syntax, the basics are always the same.
Learn the ways to define conditions in the programming language you're learning, including
if/then, do...while, and case statements.

Take action
Get familiar with the core set of keywords a programming language understands. In practice,
your code will contain more than just a language's core words, because there are almost
certainly libraries containing lots of simple functions to help you do things like print output to
the screen or display a window. The logic that drives those libraries, however, starts with a
language's built-in keywords.

3. Data types

(Seth Kenlon, CC BY-SA 4.0)

Code deals with data, so you must learn how a programming language recognizes different
kinds of data. All languages understand integers and most understand decimals and individual
characters (a, b, c, and so on). These are often denoted as int, float and double, and

Creative Commons Attribution Share-alike 4.0 8

https://creativecommons.org/licenses/by-sa/4.0/

char, but of course, the language's built-in vocabulary informs you of how to refer to these
entities.

Sometimes a language has extra data types built into it, and other times complex data types
are enabled with libraries. For instance, Python recognizes a string of characters with the
keyword str, but C code must include the string.h header file for string features.

Take action
Libraries can unlock all manner of data types for your code, but learning the basic ones
included with a language is a sensible starting point.

4. Operators and parsers

(Seth Kenlon, CC BY-SA 4.0)

Once you understand the types of data a programming language deals in, you can learn how
to analyze that data. Luckily, the discipline of mathematics is pretty stable, so math operators
are often the same (or at least very similar) across many languages. For instance, adding two
integers is usually done with a + symbol, and testing whether one integer is greater than

Creative Commons Attribution Share-alike 4.0 9

https://creativecommons.org/licenses/by-sa/4.0/

another is usually done with the > symbol. Testing for equality is usually done with == (yes,
that's two equal symbols, because a single equal symbol is usually reserved to set a value).

There are notable exceptions to the obvious in languages like Lisp and Bash, but as with
everything else, it's just a matter of mental transliteration. Once you know how the expression
is different, it's trivial for you to adapt. A quick review of a language's math operators is usually
enough to get a feel for how math is done.

You also need to know how to compare and operate on non-numerical data, such as
characters and strings. These are often done with a language's core libraries. For instance,
Python features the split() method, while C requires string.h to provide the strtok()
function.

Take action
Learn the basic functions and keywords for manipulating basic data types, and look for core
libraries that help you accomplish complex actions.

5. Functions

(Seth Kenlon, CC BY-SA 4.0)

Code usually isn't just a to-do list for a computer. Typically when you write code, you're
looking to present a computer with a set of theoretical conditions and a set of instructions for
actions that must be taken when each condition is met. While flow control with conditional

Creative Commons Attribution Share-alike 4.0 10

https://creativecommons.org/licenses/by-sa/4.0/

statements and math and logic operators can do a lot, code is a lot more efficient once
functions and classes are introduced because they let you define subroutines. For instance,
should an application require a confirmation dialogue box very frequently, it's a lot easier to
write that box once as an instance of a class rather than re-writing it each time you need it to
appear throughout your code.

You need to learn how classes and functions are defined in the programming language you're
learning. More precisely, first, you need to learn whether classes and functions are available in
the programming language. Most modern languages do support functions, but classes are
specialized constructs common to object-oriented languages.

Take action
Learn the constructs available in a language that help you write and use code efficiently.

You can learn anything
Learning a programming language is, in itself, a sort of subroutine of the coding process.
Once you understand the theory behind how code works, the language you use is just a
medium for delivering logic. The process of learning a new language is almost always the
same: learn syntax through simple exercises, learn vocabulary so you can build up to
performing complex actions, and then practice, practice, practice.

Creative Commons Attribution Share-alike 4.0 11

Is Lua worth learning?

Lua is a scripting language used for procedural programming, functional programming, and
even object-oriented programming. It uses a C-like syntax, but is dynamically typed, features
automatic memory management and garbage collection, and runs by interpreting bytecode
with a register-based virtual machine. This makes it a great language for beginners, but also a
powerful tool for experienced programmers.

Lua has been somewhat eclipsed from the public view by languages like Python and
JavaScript, but Lua has several advantages that make it popular in some major software
projects. Lua is easily embedded within other languages, meaning that you can include Lua
files in the code base of something written in (for instance) Java and it runs as if it were native
Java code. It sounds like magic, but of course there are projects like luaj working to make it
possible, and it's only possible because Lua is designed for it. It's partly because of this
flexibility that you're likely to find Lua as the scripting language for video games, graphic
applications, and more.

As with anything, it takes time to perfect, but Lua is easy (and fun) to learn. It's a consistent
language, a friendly language with useful error messages, and there's lots of great support
online. Ready to get started?

Installing Lua
On Linux, you can install Lua using your distribution's package manager. For instance, on
Fedora, CentOS, Mageia, OpenMandriva, and similar distributions:

$ sudo dnf install lua

On Debian and Debian-based systems:

$ sudo apt install lua

Creative Commons Attribution Share-alike 4.0 12

https://github.com/luaj/luaj
https://opensource.com/article/22/9/javascript-glossary
https://opensource.com/resources/python
https://opensource.com/article/22/10/object-oriented-lua%20

For Mac, you can use MacPorts or Homebrew.

$ sudo port install lua

For Windows, install Lua using Chocolatey.

To test Lua in an interactive interpreter, type lua in a terminal.

Functions
As with many programming languages, Lua syntax generally involves a built-in function or
keyword, followed by an argument. For instance, the print function displays any argument
you provide to it.

$ lua
Lua 5.4.2 Copyright (C) 1994-2020 Lua.org, PUC-Rio
> print('hello')
hello

Lua's string library can manipulate words (called "strings" in programming.) For instance, to
count the letters in a string, you use the len function of the string library:

> string.len('hello')
5

Variables
A variable allows you to create a special place in your computer's memory for temporary data.
You can create variables in Lua by inventing a name for your variable, and then putting some
data into it.

> foo = "hello world"
> print(foo)
hello world
> bar = 1+2
> print(bar)
3

Skip to content

Creative Commons Attribution Share-alike 4.0 13

https://opensource.com/article/22/11/lua-worth-learning#
https://opensource.com/article/20/3/chocolatey
https://opensource.com/article/20/6/homebrew-linux
https://opensource.com/article/20/11/macports

Tables
Second only to the popularity of variables in programming is the popularity of arrays. The
word "array" literally means an arrangement, and that's all a programming array is. It's a
specific arrangement of data, and because there is an arrangement, an array has the
advantage of being structured. An array is often used to perform essentially the same
purpose as a variable, except that an array can enforce an order to its data. In Lua, an array is
called a table.

Creating a table is like creating a variable, except that you set its initial content to two braces
({}):

> mytable = {}

When you add data to a table, it's also a lot like creating a variable, except that your variable
name always begins with the name of the table, and is separated with a dot:

> mytable.foo = "hello world"
> mytable.bar = 1+2
> print(mytable.foo)
hello world
> print(mytable.bar)
3

Scripting with Lua
Running Lua in the terminal is great for getting instant feedback, but it's more useful to run
Lua as a script. A Lua script is just a text file containing Lua code, which the Lua command can
interpret and execute.

The eternal question, when just starting to learn a programming language, is how you're
supposed to know what to write. This article has provided a good start, but so far you only
know two or three Lua functions. The key, of course, is in documentation. The Lua language
isn't that complex, and it's very reasonable to refer to the Lua documentation site for a list of
keywords and functions.

Here's a practice problem.

Suppose you want to write a Lua script that counts words in a sentence. As with many
programming challenges, there are many ways to go about this, but say the first relevant
function you find in the Lua docs is string.gmatch, which can search for a specific

Creative Commons Attribution Share-alike 4.0 14

http://www.lua.org/docs.html

character in a string. Words are usually separated by an empty space, so you decide that
counting spaces + 1 ought to render a reasonably accurate count of the words they're
separating.

Here's the code for that function:

function wc(words,delimiter)
 count=1
 for w in string.gmatch(words, delimiter) do
 count = count + 1
 end
 return count
end

These are the components of that sample code:

• function: A keyword declaring the start of a function. A custom function works
basically the same way as built-in functions (like print and string.len.)

• words and delimiter: Arguments required for the function to run. In the statement
print('hello'), the word hello is an argument.

• counter: A variable set to 1.

• for: A loop using the string.gmatch function as it iterates over the words you've
input into the function, and searches for the delimiter you've input.

• count = count +1: For each delimiter found, the value of count is re-set to its
current value plus 1.

• end: A keyword ending the for loop.

• return count: This function outputs (or returns) the contents of the count variable.

• end: A keyword ending the function.

Now that you've created a function all your own, you can use it. That's an important thing to
remember about a function. It doesn't run on its own. It waits for you to call it in your code.

Type this sample code into a text file and save it as words.lua:

function wc(words,delimiter)
 count=1
 for w in string.gmatch(words, delimiter) do
 count = count + 1
 end

Creative Commons Attribution Share-alike 4.0 15

 return count
end
result = wc('zombie apocalypse', ' ')
print(result)
result = wc('ice cream sandwich', ' ')
print(result)
result = wc('can you find the bug? ', ' ')
print(result)

You've just created a Lua script. You can run it with Lua. Can you find the problem with this
method of counting words?

$ lua ./words.lua
2
3
6

You might notice that the count is incorrect for the final phrase because there's a trailing
space in the argument. Lua correctly detected the space and tallied it into count, but the
word count is incorrect because that particular space happens not to delimit a word. I leave it
to you to solve that problem, or to find other ways in which this method isn't ideal. There's a
lot of rumination in programming. Sometimes it's purely academic, and other times it's a
question of whether an application works at all.

Learning Lua
Lua is a fun and robust language, with progressive improvements made with each release, and
an ever-growing developer base. You can use Lua as a utilitarian language for personal
scripts, or to advance your career, or just as an experiment in learning a new language. Give it
a try, and see what Lua brings to the table.

Creative Commons Attribution Share-alike 4.0 16

Learn Lua by writing a "guess the
number" game

If you're a fan of scripting languages like Bash, Python, or Ruby, you might find Lua
interesting. Lua is a dynamically typed, lightweight, efficient, and embeddable scripting
language with an API to interface with C. It runs by interpreting bytecode with a register-
based virtual machine, and it can be used for everything from procedural programming to
functional programming to data-driven programming. It can even be used for object-oriented
programming through the clever use of arrays, or tables, used to mimic classes.

A great way to get a feel for a language is by writing a simple application you're already
familiar with. Recently, some Opensource.com correspondents have demonstrated how to use
their favorite languages to create a number-guessing game. Lua is one of my favorites, so
here's my Lua version of the guessing game.

Install Lua
If you're on Linux, you can install Lua from your distribution's software repository. On macOS,
you can install Lua from MacPorts or Homebrew. On Windows, you can install Lua from
Chocolatey.

Once you have Lua installed, open your favorite text editor and get ready to code.

Lua code
First, you must set up a pseudo-random number generator, so your player has something
unpredictable to try to guess. This is a two-step process: first, you start a random seed based
on the current time, and then you select a number within the range of 1 to 100:

math.randomseed(os.time())
number = math.random(1,100)

Creative Commons Attribution Share-alike 4.0 17

https://opensource.com/article/20/3/chocolatey
https://opensource.com/article/20/6/homebrew-mac
https://opensource.com/article/20/11/macports
https://www.lua.org/

Next, create what Lua calls a table to represent your player. A table is like an array in Bash or
an ArrayList in Java. You can create a table and then assign child variables associated with
that table. In this code, player is the table, and player.guess is an entry in that table:

player = {}
player.guess = 0

For the purpose of debugging, print the secret number. This isn't good for the game, but it's
great for testing. Comments in Lua are preceded by double dashes:

print(number) --debug

Next, set up a while loop that runs forever upon the condition that the value assigned to
player.guess is not equal to the random number established at the start of the code.
Currently, player.guess is set to 0, so it is not equal to number. Lua's math operator for
inequality is ~=, which is admittedly unique, but you get used to it after a while.

The first thing that happens during this infinite loop is that the game prints a prompt so that
the player understands the game.

Next, Lua pauses and waits for the player to enter a guess. Lua reads from files and standard
in (stdin) using the io.read function. You can assign the results of io.read to a variable
that is dynamically created in the player table. The problem with the player's input is that it
is read as a string, even if it's a number. You can convert this input to an integer type using the
tonumber() function, assigning the result back to the player.guess variable that initially
contained 0:

while (player.guess ~= number) do
 print("Guess a number between 1 and 100")
 player.answer = io.read()
 player.guess = tonumber(player.answer)

Now that player.guess contains a new value, it's compared to the random number in an if
statement. Lua uses the keywords if, elseif, and else and terminates the statement with
the keyword end:

 if (player.guess > number) then
 print("Too high")
 elseif (player.guess < number) then
 print("Too low")
 else

Creative Commons Attribution Share-alike 4.0 18

https://opensource.com/article/20/6/associative-arrays-bash

 print("That's right!")
 os.exit()
 end
end

At the end, the function os.exit() closes the application upon success and the keyword
end is used twice: once to end the if statement and again to end the while loop.

Run the application
Run the game in a terminal:

$ lua ./guess.lua
96
Guess a number between 1 and 100
1
Too low
Guess a number between 1 and 100
99
Too high
Guess a number between 1 and 100
96
That's right!

That's it!

Intuitive and consistent
As you may be able to tell from this code, Lua is sublimely consistent and fairly intuitive. Its
table mechanism is a refreshing way of associating data, and its syntax is minimalistic and
efficient. There are few wasted lines in Lua code; in fact, at least one pair of lines in this
example could be optimized further, but I wanted to demonstrate data conversion as its own
step (maybe you can find the two lines I'm referring to and restructure them).

Lua is a pleasure to use, and its documentation is a pleasure to read, mostly because there's
just not that much to it. You'll learn the core language in no time, and then you'll be free to
explore LuaRocks to discover all the great libraries others have contributed to make your time
with Lua even easier. "Lua" means "moon" in Portuguese, so give it a try tonight.

Creative Commons Attribution Share-alike 4.0 19

https://opensource.com/article/19/11/getting-started-luarocks
https://www.lua.org/docs.html

Trick Lua into becoming an object-
oriented language

Lua isn't an object-oriented programming language, but a scripting language utilizing C
functions and a C-like syntax. However, there's a cool hack you can use within Lua code to
make Lua act like an object-oriented language when you need it to be. The key is in the Lua
table construct, and this article demonstrates how to use a Lua table as a stand-in for an
object-oriented class.

What is object-oriented programming?
The term "object-oriented" is a fancy way of describing, essentially, a templating system.
Imagine you're programming an application to help users spot and log zombies during a
zombie apocalypse. You're using an object-oriented language like C++, Java, or Python. You
need to create code objects that represent different types of zombies so the user can drag
them around and arrange them on a map of the city. Of course a zombie can be any number
of things: dormant, slow, fast, hungry, ravenous, and so on. That's just textual data, which
computers are good at tracking, and based on that data you could even assign the virtual
"object" a graphic so your user can identify which general type of zombie each widget
represents.

You have a few options for how you can resolve this requirement for your application:

• Force your users to learn how to code so they can program their own zombies into your
application

• Spend the rest of your life programming every possible type of zombie into your
application

• Use a code template to define the attributes of a zombie object, allowing your users to
create just the items they need, based on what zombie they've actually spotted

Creative Commons Attribution Share-alike 4.0 20

https://opensource.com/article/19/7/get-modular-python-classes
https://opensource.com/article/21/3/java-object-orientation

Obviously, the only realistic option is the final one, and it's done with a programming construct
called a class. Here's what a class might look like (this example happens to be Java code, but
the concept is the same across all object-oriented languages):

public class Zombie {
 int height;
 int weight;
 String speed;
 String location;
}

Whether or not you understand the code, you can probably tell that this is essentially a
template. It's declaring that when a virtual "object" is created to represent a zombie, the
programming language assigns that object four attributes (two integers representing height
and weight, and two words representing the movement speed and physical location). When
the user clicks the (imaginary) Add item button in the (imaginary) application, this class is
used as a template (in programming, they say "a new instance" of the class has been created)
to assign values entered by the user. Infinite zombies for the price of just one class. That's one
of the powers of object-oriented programming.

Lua tables
In Lua, the table is a data type that implements an associative array. You can think of a table in
Lua as a database. It's a store of indexed information that you can recall by using a special
syntax. Here's a very simple example:

example = {}

example.greeting = "hello"
example.space = " "
example.subject = "world"

print(example.greeting ..
 example.space ..
 example.subject)

Run the example code to see the results:

$ lua ./example.lua
hello world

Creative Commons Attribution Share-alike 4.0 21

As you can tell from the sample code, a table is essentially a bunch of keys and values kept
within a single collection (a "table").

Lua metatable
A metatable is a table that serves as a template for a table. You can designate any table as a
metatable, and then treat it much as you would a class in any other language.

Here's a metatable to define a zombie:

Zombie = {}
function Zombie.init(h,w,s,l)
 local self = setmetatable({}, Zombie)
 self.height = h
 self.weight = w
 self.speed = s
 self.location = l
 return self
end
-- use the metatable
function setup()
 z1 = Zombie.init(176,50,'slow','Forbes & Murray Avenue')
end
function run()
 print(z1.location .. ": " ..
 z1.height .. " cm, " .. z1.weight .. " kg, " .. z1.speed)
end
setup()
run()

To differentiate my metatable from a normal table, I capitalize the first letter of its name.
That's not required, but I find it a useful convention.

Here's the results of the sample code:

$ lua ./zombie.lua
Forbes & Murray Avenue: 176 cm, 50 kg, slow

This demonstration doesn't entirely do metatables justice, because the sample code creates
just a single object with no interaction from the user. To use a metatable to satisfy the issue of
creating infinite items from just one metatable, you would instead code a user input function
(using Lua's io.read() function) asking the user to provide the details of the zombie they
spotted. You'd probably even code a user interface with a "New sighting" button, or

Creative Commons Attribution Share-alike 4.0 22

something like that. That's beyond the scope of this article, though, and would only
complicate the example code.

Creating a metatable
The important thing to remember is that to create a metatable, you use this syntax:

Example = {}
function Example.init(args)
 local self = setmetatable({}, Example)
 self.key = value
 return self
end

Using a metatable
To use a metatable once it's been created, use this syntax:

my_instance = Example.init("required args")

Object-oriented Lua
Lua isn't object-oriented, but its table mechanism makes handling and tracking and sorting
data as simple as it possibly can be. It's no exaggeration to say that once you're comfortable
with tables in Lua, you can be confident that you know at least half of the language. You can
use tables (and, by extension, metatables) as arrays, maps, convenient variable organization,
close-enough classes, and more.

Creative Commons Attribution Share-alike 4.0 23

How to iterate over tables in Lua

In the Lua programming language, an array is called a table. A table is used in Lua to store
data. If you're storing a lot of data in a structured way, it's useful to know your options for
retrieving that data when you need it.

Creating a table in Lua
To create a table in Lua, you instantiate the table with an arbitrary name:

mytable = {}

There are different ways you can structure your data in a table. You could fill it with values,
essentially creating a list (called a list in some languages):

mytable = { 'zombie', 'apocalypse' }

Or you could create an associated array (called a map or dictionary in some languages). You
can add arbitrary keys to the table using dot notation. You can also add a value to that key the
same way you add a value to a variable:

myarray = {}
myarray.baz = 'happy'
myarray.qux = 'halloween'

You can add verification with the assert() function:

assert(myarray.baz == 'happy', 'unexpected value in myarray.baz')
assert(myarray.qux == 'halloween', 'unexpected value in myarray.qux')

You now have two tables: a list-style mytable and an associative array-style myarray.

Creative Commons Attribution Share-alike 4.0 24

https://opensource.com/article/22/11/lua-worth-learning

Iterating over a table with pairs
Lua's pairs() function extracts key and value pairs from a table.

print('pairs of myarray:')
for k,v in pairs(myarray) do
 print(k,v)
end

Here's the output:

pairs of myarray:
baz happy
qux halloween

If there are no keys in a table, Lua uses an index. For instance, the mytable table contains the
values zombie and apocalypse. It contains no keys, but Lua can improvise:

print('pairs of mytable:')
for k,v in pairs(mytable) do
 print(k,v)
end

Here's the output:

1 zombie
2 apocalypse

Iterating over a table with ipairs
To account for the fact that tables without keys are common, Lua also provides the ipairs
function. This function extracts the index and the value:

print('ipairs of mytable:')
for i,v in ipairs(mytable) do
 print(i,v)
end

The output is, in this case, the same as the output of pairs:

1 zombie
2 apocalypse

Creative Commons Attribution Share-alike 4.0 25

However, watch what happens when you add a key and value pair to mytable:

mytable.surprise = 'this value has a key'
print('ipairs of mytable:')
for i,v in ipairs(mytable) do
 print(i,v)
end

Lua ignores the key and value because ipairs retrieves only indexed entries:

1 zombie
2 apocalypse

The key and value pair, however, have been stored in the table:

print('pairs of mytable:')
for k,v in ipairs(mytable) do
 print(k,v)
end

The output:

1 zombie
2 apocalypse
surprise this value has a key

Retrieving arbitrary values
You don't have to iterate over a table to get data out of it. You can call arbitrary data by either
index or key:

print('call by index:')
print(mytable[2])
print(mytable[1])
print(myarray[2])
print(myarray[1])

print('call by key:')
print(myarray['qux'])
print(myarray['baz'])
print(mytable['surprise'])

The output:

Creative Commons Attribution Share-alike 4.0 26

call by index:
apocalypse
zombie
nil
nil
call by key:
halloween
happy
this value has a key

Data structures
Sometimes using a Lua table makes a lot more sense than trying to keep track of dozens of
individual variables. Once you understand how to structure and retrieve data in a language,
you're empowered to generate complex data in an organized and safe way.

Creative Commons Attribution Share-alike 4.0 27

Manipulate data in files with Lua

Some data is ephemeral, stored in RAM, and only significant while an application is running.
But some data is meant to be persistent, stored on a hard drive for later use. When you
program, whether you're working on a simple script or a complex suite of tools, it's common to
need to read and write files. Sometimes a file may contain configuration options, and other
times the file is the data that your user is creating with your application. Every language
handles this task a little differently, and this article demonstrates how to handle data files with
Lua.

Installing Lua
If you're on Linux, you can install Lua from your distribution's software repository. On macOS,
you can install Lua from MacPorts or Homebrew. On Windows, you can install Lua from
Chocolatey.

Once you have Lua installed, open your favorite text editor and get ready to code.

Reading a file with Lua
Lua uses the io library for data input and output. The following example creates a function
called ingest to read data from a file and then parses it with the :read function. When
opening a file in Lua, there are several modes you can enable. Because I just need to read
data from this file, I use the r (for "read") mode:

function ingest(file)
 local f = io.open(file, "r")
 local lines = f:read("*all")
 f:close()
 return(lines)
end

myfile=ingest("example.txt")

Creative Commons Attribution Share-alike 4.0 28

https://opensource.com/article/20/3/chocolatey
https://opensource.com/article/20/6/homebrew-mac
https://opensource.com/article/20/11/macports

print(myfile)

In the code, notice that the variable myfile is created to trigger the ingest function, and
therefore, it receives whatever that function returns. The ingest function returns the lines
(from a variable intuitively called lines) of the file. When the contents of the myfile
variable are printed in the final step, the lines of the file appear in the terminal.

If the file example.txt contains configuration options, then I would write some additional
code to parse that data, probably using another Lua library depending on whether the
configuration was stored as an INI file or YAML file or some other format. If the data were an
SVG graphic, I'd write extra code to parse XML, probably using an SVG library for Lua. In
other words, the data your code reads can be manipulated once it's loaded into memory, but
all that's required to load it is the io library.

Writing data to a file with Lua
Whether you're storing data your user is creating with your application or just metadata about
what the user is doing in an application (for instance, game saves or recent songs played),
there are many good reasons to store data for later use. In Lua, this is achieved through the
io library by opening a file, writing data into it, and closing the file:

function exgest(file)
 local f = io.open(file, "a")
 io.output(f)
 io.write("hello world\n")
 io.close(f)
end

exgest("example.txt")

To read data from the file, I open the file in r mode, but this time I use a (for "append") to
write data to the end of the file. Because I'm writing plain text into a file, I added my own
newline character (\n). Often, you're not writing raw text into a file, and you'll probably use an
additional library to write a specific format instead. For instance, you might use an INI or YAML
library to help write configuration files, an XML library to write XML, and so on.

Creative Commons Attribution Share-alike 4.0 29

File modes
When opening files in Lua, there are some safeguards and parameters to define how a file
should be handled. The default is r, which permits you to read data only:

• r for read only
• w to overwrite or create a new file if it doesn't already exist
• r+ to read and overwrite
• a to append data to a file or make a new file if it doesn't already exist
• a+ to read data, append data to a file, or make a new file if it doesn't already exist

There are a few others (b for binary formats, for instance), but those are the most common.
For the full documentation, refer to the excellent Lua documentation on Lua.org/manual.

Lua and files
Like other programming languages, Lua has plenty of library support to access a filesystem to
read and write data. Because Lua has a consistent and simple syntax, it's easy to perform
complex processing on data in files of any format. Try using Lua for your next software
project, or as an API for your C or C++ project.

Creative Commons Attribution Share-alike 4.0 30

http://lua.org/manual

Parse arguments with Lua

Most computer commands consist of two parts: The command and arguments. The command
is the program meant to be executed, while the arguments might be command options or user
input. Without this structure, a user would have to edit the command's code just to change
the data that the command processes. Imagine rewriting the printf command just to get your
computer to greet you with a "hello world" message. Arguments are vital to interactive
computing, and the Lua programming language provides the {…} expression to encapsulate
varargs given at the time of launching a Lua script.

Use arguments in Lua
Almost every command given to a computer assumes an argument, even if it expects the
argument to be an empty list. Lua records what's written after it launches, even though you
may do nothing with those arguments. To use arguments provided by the user when Lua
starts, iterate over the {…} table:

local args = {...}
for i,v in ipairs(args) do
 print(v)
end

Run the code:

$ lua ./myargs.lua
$ lua ./myargs.lua foo --bar baz
foo
--bar
baz

Having no arguments is safe, and Lua prints all arguments exactly as entered.

Creative Commons Attribution Share-alike 4.0 31

https://opensource.com/article/22/11/lua-worth-learning
https://opensource.com/article/20/8/printf

Parse arguments
For simple commands, the basic Lua faculties are sufficient to parse and process arguments.
Here's a simple example:

-- setup
local args = {...}
-- engine
function echo(p)
 print(p)
end
-- go
for i,v in ipairs(args) do
 print(i .. ": " .. v)
end
for i,v in ipairs(args) do
 if args[i] == "--say" then
 echo("echo: " .. args[i+1])
 end
end

In the setup section, dump all command arguments into a variable called args.

In the engine section, create a function called echo that prints whatever you "feed" into it.

Finally, in the go section, parse the index and values in the args variable (the arguments
provided by the user at launch). In this sample code, the first for loop just prints each index
and value for clarity.

The second for loop uses the index to examine the first argument, which is assumed to be an
option. The only valid option in this sample code is --say. If the loop finds the string --say,
it calls the echo function, and the index of the current argument plus 1 (the next argument) is
provided as the function parameter.

The delimiter for command arguments is one or more empty spaces. Run the code to see the
result:

$ lua ./echo.lua --say zombie apocalypse
1: --say
2: zombie
3: apocalypse
echo: zombie

Creative Commons Attribution Share-alike 4.0 32

Most users learn that spaces are significant when giving commands to a computer, so
dropping the third argument, in this case, is expected behavior. Here's a variation to
demonstrate two valid "escape" methods:

$ lua ./echo.lua --say "zombie apocalypse"
1: --say
2: zombie apocalypse
echo: zombie apocalypse

$ lua ./echo.lua --say zombie\ apocalypse
1: --say
2: zombie apocalypse
echo: zombie apocalypse

Parse arguments
Parsing arguments manually is simple and dependency-free. However, there are details you
must consider. Most modern commands allow for short options (for instance, -f) and long
options (--foo), and most offer a help menu with -h or --help or when a required argument
isn't supplied.

Using LuaRocks makes it easy to install additional libraries. There are some very good ones,
such as alt-getopt, that provide additional infrastructure for parsing arguments.

Creative Commons Attribution Share-alike 4.0 33

https://opensource.com/article/21/8/parsing-commands-lua
https://opensource.com/article/19/11/getting-started-luarocks

Make Lua development easy with
Luarocks

Bash too basic? Too much whitespace in Python? Go too corporate?

You should try Lua, a lightweight, efficient, and embeddable scripting language supporting
procedural programming, object-oriented programming, functional programming, data-
driven programming, and data description. And best of all, it uses explicit syntax for scoping!

Lua is also small. Lua's source code is just 24,000 lines of C, the Lua interpreter (on 64-bit
Linux) built with all standard Lua libraries is 247K, and the Lua library is 421K.

You might think that such a small language must be too simplistic to do any real work, but in
fact Lua has a vast collection of third-party libraries (including GUI toolkits), it's
used extensively in video game and film production for 3D shaders, and is a common scripting
language for video game engines. To make it easy to get started with Lua, there's even a
package manager called Luarocks.

What is Luarocks?
Python has PIP, Ruby has Gems, Java has Maven, Node has npm, and Lua has Luarocks.
Luarocks is a website and a command. The website is home to open source libraries available
for programmers to add to their Lua projects. The command searches the site and installs
libraries (defined as "rocks") upon demand.

What is a programming library?
If you're new to programming, you might think of a "library" as just a place where books are
stored. Programming libraries ("lib" or "libs" for short) are a little like a book library in the
sense that both of these things contain information that someone else has already worked to
discover, and which you can borrow so you have to do less work.

Creative Commons Attribution Share-alike 4.0 34

http://luarocks.org/

For example, if you were writing code that measures how much stress a special polymer can
withstand before breaking, you might think you'd have to be pretty clever with math. But if
there was already an open source library specifically designed for exactly that sort of
calculation, then you could include that library in your code and let it solve that problem for
you (provided you give the library's internal functions the numbers it needs in order to
perform an accurate calculation).

In open source programming, you can install libraries freely and use other people's work at will.
Luarocks is the mechanism for Lua that makes it quick and easy to find and use a Lua library.

Installing Luarocks
The luarocks command isn't actually required to use packages from the Luarocks website,
but it does keep you from having to leave your text editor and venture onto the worldwide
web [of potential distractions]. To install Luarocks, you first need to install Lua.

Lua is available from lua.org or, on Linux, from your distribution's software repository. For
example, on Fedora, CentOS, or RHEL:

$ sudo dnf install lua

On Debian and Ubuntu:

$ sudo apt install lua

On Windows and Mac, you can download and install Lua from the website.

Once Lua is installed, install Luarocks. If you're on Linux, the luarocks command is available in
your distribution's repository.

On Mac, you can install it with Brew or compile from source:

$ wget https://luarocks.org/releases/luarocks-X.Y.Z.tar.gz
$ tar zxpf luarocks-X.Y.Z.tar.gz
$ cd luarocks-X.Y.Z
$./configure; sudo make bootstrap

On Windows, follow the install instructions on the Luarocks wiki.

Creative Commons Attribution Share-alike 4.0 35

https://github.com/luarocks/luarocks/wiki/Installation-instructions-for-Windows
http://brew.sh/
http://lua.org/

Search for a library with Luarocks
The typical usage of the luarocks command, from the perspective of a user rather than a
developer, involves searching for a library required by some Lua application you want to run
and installing that library.

To search for the Lua package luasec (a library providing HTTPS support for luarocks), try
this command:

$ luarocks search luasec
Warning: falling back to curl -
install luasec to get native HTTPS support

Search results:
===============

Rockspecs and source rocks:

luasec
 0.9-1 (rockspec) - https://luarocks.org
 0.9-1 (src) - https://luarocks.org
 0.8.2-1 (rockspec) - https://luarocks.org
[...]

Install a library with Luarocks
To install the luasec library:

$ luarocks install --local luasec
[...]
gcc -shared -o ssl.so -L/usr/lib64
src/config.o src/ec.o src/x509.o [...]
-L/usr/lib -Wl,-rpath,/usr/lib: -lssl -lcrypto

luasec 0.9-1 is now installed in
/home/seth/.luarocks (license: MIT)

You can install Lua libraries locally or on a systemwide basis. A local install indicates that the
Lua library you install is available to you, but no other user of the computer. If you share your
computer with someone else, and you each have your own login account, then you probably
want to install a library systemwide. However, if you're the only user of your computer, it's a

Creative Commons Attribution Share-alike 4.0 36

https://opensource.com/article/19/11/add-user-gui-linux

good habit to install libraries locally, if only because that's the appropriate method when you
develop with Lua.

If you're developing a Lua application, then you probably want to install a library to a project
directory instead. In Luarocks terminology, this is a tree. Your default tree when installing
libraries locally is $HOME/.luarocks, but you can redefine it arbitrarily.

$ mkdir local
$ luarocks --tree=./local install cmark
Installing https://luarocks.org/cmark-0.YY.0-1.src.rock
gcc -O2 -fPIC -I/usr/include -c cmark_wrap.c [..]
gcc -O2 -fPIC -I/usr/include -c ext/blocks.c -o ext/blocks.o [..]
[...]
No existing manifest. Attempting to rebuild...
cmark 0.29.0-1 is now installed in
/home/seth/downloads/osdc/example-lua/./local
(license: BSD2)

The library (in this example, the cmark library) is installed to the path specified by the --tree
option. You can verify it by listing the contents of the destination:

$ find ./local/ -type d -name "cmark"
./local/share/lua/5.1/cmark
./local/lib/luarocks/rocks/cmark

You can use the library in your Lua code by defining the package.path variable to point to
your local rocks directory:

package.path = package.path .. ';local/share/lua/5.3/?.lua'

require("cmark")

If a library you've installed is compiled, resulting in a .so file (a .dll on Windows and .dylib on
macOS), then you must add to your cpath instead. For instance, the luafilesystem library
provides the file lfs.so:

package.cpath = package.cpath .. ';local/share/lua/5.3/?.lua'

require("lfs")

Creative Commons Attribution Share-alike 4.0 37

Getting information about an installed rock
You can see information about an installed rock with the show option:

$ luarocks show luasec
LuaSec 0.9-1 - A binding for OpenSSL library
to provide TLS/SSL communication over LuaSocket.

This version delegates to LuaSocket the TCP
connection establishment between
the client and server. Then LuaSec uses this
connection to start a secure TLS/SSL session.

License: MIT
Homepage: https://github.com/brunoos/luasec/wiki
Installed in: /home/seth/.luarocks
[...]

This provides you with a summary of what a library provides from a user's perspective, displays
the project homepage in case you want to investigate further, and shows you where the library
is installed. In this example, it's installed in my home directory in a .luarocks folder. This
assures me that it's installed locally, which means that if I migrate my home directory to a
different computer, I'll retain my Luarocks configuration and installs.

Get a list of installed rocks
You can list all installed rocks on your system with the list option:

$ luarocks list

Installed rocks:

luasec
 0.9-1 (installed) - /home/seth/.luarocks/lib/luarocks/rocks

luasocket
 3.0rc1-2 (installed) - /home/seth/.luarocks/lib/luarocks/rocks

luce
 scm-0 (installed) - /home/seth/.luarocks/lib/luarocks/rocks

tekui
 1.07-1 (installed) - /home/seth/.luarocks/lib/luarocks/rocks

Creative Commons Attribution Share-alike 4.0 38

This displays the rocks you have installed in the default install location. Developers can
override this by using the --tree option to redefine the active tree.

Remove a rock
If you want to remove a rock, you can do that with Luarocks using the remove option:

$ luarocks remove --local cmark

This removes a library (in this example, the cmark library) from your local tree. Developers
can override this by using the --tree option to redefine the active tree.

If you want to remove all the rocks you have installed, use the purge option instead.

Luarocks rocks
Whether you're a user exploring exciting new Lua applications and need to install some
dependencies or you're a developer using Lua to create exciting new applications, Luarocks
makes your job easy. Lua is a beautiful and simple language, and Luarocks is perfectly suited
to be its package manager. Give both a try today!Parsing config files with Lua

Creative Commons Attribution Share-alike 4.0 39

Parsing config files with Lua

Not all applications need configuration files; many applications benefit from starting fresh
each time they are launched. Simple utilities, for instance, rarely require preferences or
settings that persist across uses. However, when you write a complex application, it's nice for
users to be able to configure how they interact with it and how it interacts with their system.
That's what configuration files are for, and this article discusses some of the ways you can
implement persistent settings with the Lua programming language.

Choose a format
The important thing about configuration files is that they are consistent and predictable. You
do not want to dump information into a file under the auspices of saving user preferences and
then spend days writing code to reverse-engineer the random bits of information that have
ended up in the file.

There are several popular formats for configuration files. Lua has libraries for most of the
common configuration formats; in this article, I'll use the INI format.

Installing the library
The central hub for Lua libraries is Luarocks.org. You can search for libraries on the website, or
you can install and use the luarocks terminal command.

On Linux, you can install it from your distribution's software repository. For example:

$ sudo dnf install luarocks

On macOS, use MacPorts or Homebrew. On Windows, use Chocolatey.

Creative Commons Attribution Share-alike 4.0 40

https://opensource.com/article/20/3/chocolatey
https://opensource.com/article/20/6/homebrew-mac
https://opensource.com/article/20/11/macports
https://opensource.com/article/19/11/getting-started-luarocks
https://opensource.com/article/21/6/config-files-and-their-formats

Once luarocks is installed, you can use the search subcommand to search for an
appropriate library. If you don't know the name of a library, you can search for a keyword, like
ini or xml or json, depending on what's relevant to what you're trying to do. In this case,
you can just search for inifile, which is the library I use to parse text files in the INI format:

$ luarocks search inifile
Search results:
inifile
 1.0-2 (rockspec) - https://luarocks.org
 1.0-2 (src) - https://luarocks.org
 1.0-1 (rockspec) - https://luarocks.org
 [...]

A common trap programmers fall into is installing a library on their system and forgetting to
bundle it with their application. This can create problems for users who don't have the library
installed. To avoid this, use the --tree option to install the library to a local folder within your
project directory. If you don't have a project directory, create one first, and then install:

$ mkdir demo
$ cd demo
$ luarocks install --tree=local inifile

The --tree option tells luarocks to create a new directory, called local in this case, and
install your library into it. With this simple trick, you can install all the dependency code your
project uses directly into the project directory.

Code setup
First, create some INI data in a file called myconfig.ini:

[example]
name=Tux
species=penguin
enabled=false

[demo]
name=Beastie
species=demon
enabled=false

Save the file as myconfig.ini into your home directory, not into your project directory. You
usually want configuration files to exist outside your application so that even when a user

Creative Commons Attribution Share-alike 4.0 41

uninstalls your application, the data they generate while using the application remains on their
system. Users might remove unnecessary config files manually, but many don't. As a result, if
they reinstall an application, it will retain all of their preferences.

Config file locations are technically unimportant, but each operating system (OS) has a
specification or a tradition of where they ought to be placed. On Linux, this is defined by the
Freedesktop specification. It dictates that configuration files are to be saved in a hidden
folder named ~/.config. For clarity during this exercise, just save the file in your home
directory so that it's easy to find and use.

Create a second file named main.lua and open it in your favorite text editor.

First, you must tell Lua where you've placed the additional library you want it to use. The
package.path variable determines where Lua looks for libraries. You can view Lua's default
package path in a terminal:

$ Lua
> print(package.path)
./?.lua;/usr/share/lua/5.3/?.lua;/usr/share/lua/5.3/?/init.lua;/usr/lib64/lua/
5.3/?.lua;/usr/lib64/lua/5.3/?/init.lua

In your Lua code, append your local library location to package.path:

package.path = package.path .. ';local/share/lua/5.3/?.lua

Parsing INI files with Lua
With the package location established, the next thing to do is to require the inifile library
and then handle some OS logistics. Even though this is a simple example application, the
code needs to get the user's home directory location from the OS and establish how to
communicate filesystem paths back to the OS when necessary:

package.path = package.path .. ';local/share/lua/5.3/?.lua
inifile = require('inifile')

-- find home directory
home = os.getenv('HOME')

-- detect path separator
-- returns '/' for Linux and Mac
-- and '\' for Windows
d = package.config:sub(1,1)

Creative Commons Attribution Share-alike 4.0 42

https://www.freedesktop.org/wiki/Specifications

Now you can use inifile to parse data from the config file into a Lua table. Once the data
has been placed into a table, you can query the table as you would any other Lua table:

-- parse the INI file and
-- put values into a table called conf
conf = inifile.parse(home .. d .. 'myconfig.ini')

-- print the data for review
print(conf['example']['name'])
print(conf['example']['species'])
print(conf['example']['enabled'])

Run the code in a terminal to see the results:

$ lua ./main.lua
Tux
penguin
false

That looks correct. Try doing the same for the demo block.

Saving data in the INI format
Not all parser libraries read and write data (often called encoding and decoding), but the
inifile library does. That means you can use it to make changes to a configuration file.

To change a value in a configuration file, you set the variable representing the value in the
parsed table, and then you write the table back to the configuration file:

-- set enabled to true
conf['example']['enabled'] = true
conf['demo']['enabled'] = true

-- save the change
inifile.save(home .. d .. 'myconfig.ini', conf)

Take a look at the configuration file now:

$ cat ~/myconfig.ini
[example]
name=Tux
species=penguin
enabled=true

[demo]

Creative Commons Attribution Share-alike 4.0 43

name=Beastie
species=demon
enabled=true

Config files
The ability to save data about how a user wants to use an application is an important part of
programming. Fortunately, it's a common task for programmers, so much of the work has
probably already been done. Find a good library for encoding and decoding into an open
format, and you can provide a persistent and consistent user experience.

Here's the entire demo code for reference:

package.path = package.path .. ';local/share/lua/5.3/?.lua'
inifile = require('inifile')

-- find home directory
home = os.getenv('HOME')

-- detect path separator
-- returns '/' for Linux and Mac
-- and '\' for Windows
d = package.config:sub(1,1)

-- parse the INI file and
-- put values into a table called conf
conf = inifile.parse(home .. d .. 'myconfig.ini')

-- print the data for review
print(conf['example']['name'])
print(conf['example']['species'])
print(conf['example']['enabled'])

-- enable Tux
conf['example']['enabled'] = true

-- save the change
inifile.save(home .. d .. 'myconfig.ini', conf)

Creative Commons Attribution Share-alike 4.0 44

Parsing command options in Lua

When you enter a command into your terminal, there are usually options, also called
switches or flags, that you can use to modify how the command runs. This is a useful
convention defined by the POSIX specification, so as a programmer, it's helpful to know how
to detect and parse options.

As with most languages, there are several ways to solve the problem of parsing options in Lua.
My favorite is alt-getopt.

Installing
The easiest way to obtain and use alt-getopt in your code is to install it with LuaRocks. For
most use-cases, you probably want to install it into your local project directory:

$ mkdir local
$ luarocks --tree=local install alt-getopt
Installing https://luarocks.org/alt-getopt-0.X.Y-1.src.rock
[...]
alt-getopt 0.X.Y-1 is now installed in /tux/myproject/local (license: MIT/X11)

Alternately, you can download the code from GitHub.

Adding a library to your Lua code
Assuming you've installed the library locally, then you can define your Lua package path and
then require the alt-getopt package:

package.path = package.path .. ';local/share/lua/5.1/?.lua'
local alt_getopt = require("alt_getopt")

If you've installed it to a known system location, you can omit the package.path line
(because Lua already knows to look for system-wide libraries.)

Creative Commons Attribution Share-alike 4.0 45

https://github.com/cheusov/lua-alt-getopt
https://opensource.com/article/19/11/getting-started-luarocks
https://luarocks.org/modules/mpeterv/alt-getopt
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://opensource.com/article/21/7/linux-terminal-basics#options

Now you're set to parse options in Lua.

Option parsing in Lua
The first thing you must do to parse options is to define the valid options your application can
accept. The alt_getopt library sees all options primarily as short options, meaning that you
define options as single letters. You can add long versions later.

When you define valid options, you create a list delimited by colons (:), which is interpreted
by the get_opts function provided by alt-getopts.

First, create some variables to represent the options. The variables short_opt and
optarg represent the short option and the option argument. These are arbitrary variable
names, so you can call them anything (as long as it's a valid name for a variable).

The table long_opts must exist, but I find it easiest to define the values of the long options
after you've decided on the short options, so leave it empty for now.

local long_opts = {}
local short_opt
local optarg

With those variables declared, you can iterate over the arguments provided by the user,
checking to see whether any argument matches your approved list of valid short options.

If a valid option is found, you use the pairs function in Lua to extract the value of the option.

To create an option that accepts no argument of its own but is either on or off (often called a
switch), you place the short option you want to define to the right of a colon (:) character.

In this example, I've created a loop to check for the short option -a, which is a switch:

short_opt,optarg = alt_getopt.get_opts (arg, ":a", long_opts)
local optvalues = {}
for k,v in pairs (short_opt) do
 table.insert (optvalues, "value of " .. k .. " is " .. v .. "\n")
end

table.sort (optvalues)
io.write (table.concat (optvalues))

for i = optarg,#arg do
 io.write (string.format ("ARGV [%s] = %s\n", i, arg [i]))
end

Creative Commons Attribution Share-alike 4.0 46

At the end of this sample code, I included a for-loop to iterate over any remaining arguments
in the command because anything not detected as a valid option must be an argument
(probably a file name, URI, or whatever it is that your application operates upon).

Test the code:

$ lua test.lua -a
value of a is 1

The test script has successfully detected the option -a, and has assigned it a value of 1 to
represent that it does exist.

Try it again with an extra argument:

$ lua test.lua -a hello
value of a is 1
ARGV [2] = hello

Options with arguments
Some options require an argument all their own. For instance, you might want to allow the
user to point your application to a custom configuration file, set an attribute to a color, or set
the resolution of a graphic. In alt_getopt, options that accept arguments are placed on the
left of the colon (:) in the short options list.

short_opt,optarg = alt_getopt.get_opts (arg, "c:a", long_opts)

Test the code:

$ lua test.lua -a -c my.config
value of a is 1
value of c is my.config

Try it again, this time with a spare argument:

$ lua test.lua -a -c my.config hello
value of a is 1
value of c is my.config
ARGV [4] = hello

Creative Commons Attribution Share-alike 4.0 47

Long options
Short options are great for power users, but they don't tend to be very memorable. You can
create a table of long options that point to short options so users can learn long options
before abbreviating their commands with single-letter options.

local long_opts = {
 alpha = "a",
 config = "c"
}

Users now have the choice between long and short options:

$ lua test.lua --config my.config --alpha hello
value of a is 1
value of c is my.config
ARGV [4] = hello

Option parsing
Here's the full demonstration code for your reference:

#!/usr/bin/env lua
package.path = package.path .. ';local/share/lua/5.1/?.lua'

local alt_getopt = require("alt_getopt")

local long_opts = {
 alpha = "a",
 config = "c"
}

local short_opt
local optarg

short_opt,optarg = alt_getopt.get_opts (arg, "c:a", long_opts)
local optvalues = {}
for k,v in pairs (short_opt) do
 table.insert (optvalues, "value of " .. k .. " is " .. v .. "\n")
end

table.sort (optvalues)
io.write (table.concat (optvalues))

for i = optarg,#arg do

Creative Commons Attribution Share-alike 4.0 48

 io.write (string.format ("ARGV [%s] = %s\n", i, arg [i]))
end

There are further examples in the project's Git repository. Including options for your users is
an important feature for any application, and Lua makes it easy to do. There are other libraries
aside from alt_getopt, but I find this one easy and quick to use.

Creative Commons Attribution Share-alike 4.0 49

You're (almost) a Lua pro

You've reached the end of this book, but hopefully not the end of your Lua journey. There's
actually not that much more to Lua, and that's a feature! Instead of spending your time
learning more about a language, you're now free to start putting what you know into practice.

There are several great Lua resources out there, but as with much in open source, the best
place to go when you have a question is straight to the source. The Lua website,
https://www.lua.org, has great documentation, including the language specification itself and
links to physical books you can keep stocked on your bookshelf for reference.

Lua has made programming a true pleasure for me, and I hope it does the same for you.

Creative Commons Attribution Share-alike 4.0 50

https://www.lua.org/

	by Seth Kenlon
	We are Opensource.com
	Seth Kenlon
	5 steps to learn any programming language
	1. Syntax
	Take action

	2. Built-ins and conditionals
	Take action

	3. Data types
	Take action

	4. Operators and parsers
	Take action

	5. Functions
	Take action

	You can learn anything

	Is Lua worth learning?
	Installing Lua
	Functions
	Variables
	Tables
	Scripting with Lua
	Learning Lua

	Learn Lua by writing a "guess the number" game
	Install Lua
	Lua code
	Run the application
	Intuitive and consistent

	Trick Lua into becoming an object-oriented language
	What is object-oriented programming?
	Lua tables
	Lua metatable
	Creating a metatable
	Using a metatable
	Object-oriented Lua

	How to iterate over tables in Lua
	Creating a table in Lua
	Iterating over a table with pairs
	Iterating over a table with ipairs
	Retrieving arbitrary values
	Data structures

	Manipulate data in files with Lua
	Installing Lua
	Reading a file with Lua
	Writing data to a file with Lua
	File modes
	Lua and files

	Parse arguments with Lua
	Use arguments in Lua
	Parse arguments
	Parse arguments

	Make Lua development easy with Luarocks
	What is Luarocks?
	What is a programming library?
	Installing Luarocks
	Search for a library with Luarocks
	Install a library with Luarocks
	Getting information about an installed rock
	Get a list of installed rocks
	Remove a rock
	Luarocks rocks

	Parsing config files with Lua
	Choose a format
	Installing the library
	Code setup
	Parsing INI files with Lua
	Saving data in the INI format
	Config files

	Parsing command options in Lua
	Installing
	Adding a library to your Lua code
	Option parsing in Lua
	Options with arguments
	Long options
	Option parsing

	You're (almost) a Lua pro

