

DZone, Inc. | www.dzone.com

By Giorgio Sironi

HOW TO WRITE A TEST

P
H

P
U

n
it

:
P

ro
fe

ss
io

n
al

 T
e

st
 D

ri
ve

n
 D

e
ve

lo
p

m
e

n
t

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#124

CONTENTS INCLUDE:
n	 How to Write a Test
n	 Assertions
n	 Fixtures
n	 Annotations
n	 Command Line Usage
n	 Hot Tips and more...

Extensively testing a web application is the only way to make
sure that the code you have written really works. Formal proofs
of correctness are impossible or impractical to put together for
the majority of computer programs. Therefore, actually running
code in a sandbox under controlled conditions is the way to
uncover bugs and drive the development of new features.

Of course, manual testing cannot be totally substituted by
automated approaches, but automating a large part of an
application’s tests leads to greater testing frequency, and
quicker discovery of issues and regression.

Automated testing is based on the concept of test cases
(classes in PHPUnit’s case) that compose a complete test suite.
This suite, or a subset of it, can be run at will to check the
production code correctness.

In this approach, the simplest and most effective way to write
tests is to write code—simple code, but with the mandatory
expressiveness of imperative languages that should give you
the needed freedom.

PHPUnit: PHP Test-Driven Development

Automated Tools to Improve Your PHP Code Quality

Hot
Tip

Besides the quality assurance side of testing, there is also
the advantage in feedback that a good test suite provides.
The more fine-grained the tests are, the more internal
quality is put under “the lens”. Clean code is easy to test,
while you can’t get away with technical debt if you have to
write automated tests at the same time.

Tests are the first users of your code. They will tell you much
about its simplicity of use, the isolation from component
dependencies and the side effects that may arise.

Installation
In the first part of this DZone Refcard, we’ll test array_sum(), a
simple, native PHP function that computes the sum of values
in an array. The purpose of this first test is to introduce the
mechanics of PHPUnit usage.

Before writing a test at all, we need PHPUnit. You can simply
grab it via its PEAR channel:

sudo pear channel-discover pear.phpunit.de
sudo pear channel-discover ... # other channels
sudo pear install phpunit/PHPUnit
sudo pecl install xdebug # for code coverage

The other channels where PHPUnit pulls components from may
change in the future, so refer to the official documentation
(http://phpunit.de/manual). This DZone Refcard is updated to
the 3.5 version.

The first test
Here is how a test case looks like:

<?php
class ArraySumTest extends PHPUnit_Framework_TestCase
{
 public function testSumTheValuesOfAnEmptyArray()
 {
 $sum = array_sum(array());
 $this->assertEquals(0, $sum, “The sum of an empty array is computed
as $sum.”);
 }
}

Essentially, this is a class that extends PHPUnit_Framework_
TestCase so that it can be run by the /usr/bin/phpunit script.
Here is a sample output:

	

The methods whose names start with ‘test’ are executed, one
at a time, on a different instance of this Test Case. You can
execute whichever code you prefer in order to produce a set
of results to confront with the ones you expect.

You can use methods on the Test Case that start with ‘assert’
to execute checks on the result of your computations that will
ensure the system is behaving correctly. PHPUnit provides
many simple assertion methods, but you can always define
your own by adding private methods.

Executing phpunit filename.php from the command line would
run the test. You can also run all the tests in a certain folder
(subfolders included) simply by passing a path to the directory.

This was the simplest test we could possibly write: it will
provide good practice to start with and you can augment the
complexity as you gain confidence about the System Under
Test (SUT).

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2 PHPUnit: Professional Test Driven Development

Now that we are capable of running a test on your machine,
let’s gain confidence and expand the test a bit:

<?php
class ArraySumTest extends PHPUnit_Framework_TestCase
{
 public function testSumTheValuesOfAnEmptyArray()
 {
 $sum = array_sum(array());
 $this->assertEquals(0, $sum);
 }

 public function testSumTheValuesOfAnArrayWithOneValue()
 {
 $sum = array_sum(array(42));
 $this->assertEquals(42, $sum);
 }

 public function testSumTheValuesOfAnArrayWithManyElements()
 {
 $sum = array_sum(array(1, 2, 3, 4, 5, 6));
 $this->assertEquals(21, $sum);
 }

 public function testSumTheValuesOfAnArrayWithFloatValues()
 {
 $sum = array_sum(array(1, 2.5));
 $this->assertEquals(3.5, $sum);
 }
}

A failing test
Here is a failing test instead. We expect that array_sum works
recursively by summing up all the values in internal arrays:

<?php
class ArraySumTest extends PHPUnit_Framework_TestCase
{
 // ...
 public function testSumsRecursively()
 {
 $sum = array_sum(array(1, array(2, 3)));
 $this->assertEquals(6, $sum);
 }

}

When run, this test gives the following result:

	
 We were asserting that the production code performed a
task that it couldn’t. The test tells us it is not living up to
our expectations.

Before diving into PHPUnit’s features, I want to highlight
some methods that complement assertions in the flow control
of PHPUnit.

Method Effect

$this->fail($message = '') Will instantly make the test fail, like in the case an assertion fails.

$this->markTestSkipped() Tells PHPUnit that this test should be interrupted and marks it
with an (S) in the results.

$this->markTestIncomplete() Tells PHPUnit that this test is incomplete and shouldn't be run
either. It will be marked with an (i) in the results and will turn
the green bar of PHPUnit into an orange one.

Assertion methods are used to check the result of your
test’s execution with predefined expected values. All these
methods are available on $this, as they are defined on
PHPUnit_Framework_TestCase. I report here the ones that,
by experience, are the most handy and widely called in my
test suites.

ASSERTIONS

Basic assertions are the ones you always see in introductory
material, and can serve many needs. They are also versatile,
since corner cases can be reconduced to assertTrue() and
assertEquals() in nearly any scenario.

Method Effect

assertEquals() Fails if the two arguments are not equal (checks with the ==
operator).

assertSame() Fails if the two arguments are not identical (checks with ===),
that is, they are not the same object or they are not scalar equal
in value and type.

assertTrue() Fails when this argument is not true.

assertFalse() Fails when this argument is not false.

assertEmpty() Fails when empty() on the parameter is false.

assertNull(), assertNotNull() Checks if the variable is the special value NULL or not.

assertInstanceOf() Checks that an object is an instance of (using this operator) the
class or interface passed.

assertInternalType() Checks if a scalar is of a particular PHP type-like integer or
boolean.

Here is a first sample of these methods in action:

<?php
class BasicAssertionsTest extends PHPUnit_Framework_TestCase
{
 public function testBasicAssertionsWorkAsExpected()
 {
 $this->assertEquals(1, 1);
 $this->assertEquals(1, “1”);
 $this->assertEquals(3.0001, 3.000, ‘Floats should be compared with
a tolerance’, 0.001);
 $this->assertSame(42, (int) “42”);
 $this->assertTrue(true);
 $this->assertFalse(false);
 $this->assertEmpty(‘0’);
 $this->assertNull(null);
 $this->assertNotNull(42);
 $this->assertInstanceOf(‘stdClass’, new stdClass);
 $this->assertInternalType(‘string’, ‘hello, world’);
 }
}

There are more elaborate assertions which are indeed
frequently called:

Method Effect

assertArrayHasKey(),
assertArrayNotHasKey()

Checks the presence of a key in an array.

assertContains($needle,
$haystack)

Checks the presence of a value in an array, both numerical
or associative. Works also with two strings, checking that
the first is contained in the other one.

assertContainsOnly($type) Checks that an array is composed only of $type values, like
integers or booleans.

assertRegExp() Checks that a string matches a PREG-based regular
expression.

Here is a sample test case:

<?php
class ArrayAndStringsAssertionsTest extends PHPUnit_Framework_TestCase
{
 public function testArrayAndStringsAssertionsWorkAsExpected()
 {
 $this->assertArrayHasKey(‘key’, array(‘key’ => ‘value’,
‘anotherKey’ => ‘anotherValue’));
 $this->assertArrayNotHasKey(‘key’, array(‘anotherKey’,
‘yetAnotherKey’));
 $this->assertContains(‘value’, array(‘value’));
 // works for strings too
 $this->assertContains(‘world’, ‘Hello, world!’);
 // this would work with any primitive type
 $this->assertContainsOnly(‘string’, array(‘value’, ‘otherValue’));
 // PCRE regular expression
 $this->assertRegExp(‘/[A-Za-z ,!]+/’, ‘Hello, world!’);
 }
}

There are also special cases:

Method Effect

assertFileExists() Check that a file is present in the filesystem based on
its path.

assertFileEquals() Check that the content of two files are equal.

assertGreatherThan(),
assertGreatherThanOrEqual(),
assertLessThan(),
assertLessThanOrEqual()

All assertion methods oriented to operate with >, >=, <
and <= over the two values passed.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3 PHPUnit: Professional Test Driven Development

Here is an example of them in action:

<?php
class ExoticAssertionsTest extends PHPUnit_Framework_TestCase
{
 public function testExoticAssertionsWorkAsExpected()
 {
 $this->assertFileExists(__FILE__);
 $this->assertFileEquals(__FILE__, __FILE__);
 $this->assertGreaterThan(23, 42);
 $this->assertGreaterThanOrEqual(42, 42);
 $this->assertLessThan(16, 15);
 $this->assertLessThanOrEqual(16, 16);
 }
}

Custom assertions are great tools (you just have to define an
assert*() method). However, taking advantage of the assertions
already supported by the framework will not require that you
reinvent the wheel, or extend your base Test Case class in all
your tests.

All assertion methods take a last optional argument
$message, which is displayed when they fail. You may
enhance your tests error messages when they are not clear
with this additional parameter.

Hot
Tip

PHPUnit creates a new Test Case object for each run,
so you won’t have to reset your fields between the test
methods. Therefore, each test method is run in isolation
and won’t interfere with the $this fields set in previous runs.

FIXTURES

Fixtures are a common way to set up objects that are used in all
test methods before each test run.

In PHPUnit, fixtures can be implemented with the setUp() and
tearDown() hook methods, which can populate $this private
fields, preparing them for usage by the single test methods.

There are also two static methods, setUpBeforeClass() and
tearDownAfterClass(), that are called only one time for each
test case class. Because of their static modifier, they can only
access static properties and are typically used for resources
that are particularly heavy to set up, like database connections.

Due to this isolation property, tearDown() is usually not
present unless there is some external resource to release, like
a database. For in-memory objects, garbage collection will
be enough.

Due to the space available, this Refcard won’t go into
mechanisms for setting up global variables or static attributes,
which are usually more a design problem than a testing one.

Here is a test case which uses fixtures implemented with setUp().

<?php
class FixtureTest extends PHPUnit_Framework_TestCase
{
 private $systemUnderTest;

 public function setUp()
 {
 $this->systemUnderTest = new stdClass;
 }

 public function testFixtureWorkAsExpected()
 {
 $this->assertInstanceof(‘stdClass’, $this->systemUnderTest);
 $this->systemUnderTest->field = true;
 }
 public function testAnotherTestIsRunInIsolation()
 {
 $this->assertFalse(isset($this->systemUnderTest->field));
 }

 public function tearDown()
 {
 // don’t need to do anything if garbage collection would take care
of this
 // close your database connections, for example
 }
}

PHPUnit supports the use of some annotations on test case
and single test methods with the goal of transforming into
declarative options some common behaviors diffused in test
suites. For example, running the same test multiple times with
a different set of input data is an operation common enough to
warrant its own annotation. The mechanism of these multiple
runs isn’t duplicated throughout the test suite of our projects,
instead it is kept in the framework.

PHP does not have native support for annotations, so they
are embedded into the docblocks of classes and methods,
much like the @param and @return annotations used for API
documentation. These annotations will save you from writing
boilerplate code you would otherwise end up repeating in a
bunch of tests that all look alike, or inheriting from some base
test case class that gets longer and longer.

@dataProvider
This annotation tells PHPUnit to run a single test method
multiple times by passing a different data set as method
parameters each time.

PHPUnit will display a different failure for each of the different
runs, so that multiple tries are independent and one failing
does not affect the sebsequent execution of the others.
Running the same test code with a foreach() cycle would not
have the same effect.

ANNOTATIONS

	
 @depends

Hot
Tip

This annotation declares a test as dependent on a previous
one, saying essentially that when a basic test on the SUT
fails, it is not worthy to even try to run a more complex,
related one.

In case the SUT experiences a large regression, the errors
presented by a test run would be much more focused,
consisting only of the tests that failed first and excluding their
dependent siblings.

Defining dependencies is usually only a good idea inside the
same test case class. In fact, it is the only scale supported by
this feature. The dependent test will be marked as ‘skipped’
when the first one fails, otherwise it will be run normally.
Moreover, the first test can pass a computation result to its
dependency by returning it (the dependent will accept it as a
parameter). A classic example is testing the add() and remove()
methods of a collection:

The first test will exercise add(), check that the inserted
element is present and return the collection.

The second test will exercise remove() on the passed collection,
and check that the element is not present anymore.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4 PHPUnit: Professional Test Driven Development

	
 @expectedException (with @expectedExceptionCode and
@expectedExceptionMessage)
This annotation asserts that the code contained in the test
methods throws an exception, and optionally checks its code
and its message.

Note that any line of code can be throwing the exception, as
long as it is called inside the test method. If you want a more
accurate check on which statement should raise an exception,
stick to try/catch blocks.

@group

Hot
Tip

Grouping aids you in running the exact amount of tests
during development, and not the entire suite, which can
require much more time. You will get feedback on a more
frequent basis, and only from the code you select. This
leaves the rest of the code base for subsequent integration
(pre-commit or pre-push).

This annotation is not applicable to test methods, but only on
test cases. It defines a test case as pertaining to a particular
group that can be used as a filter to run all the grouped tests
independently from the rest of the suite.

A test case can be in multiple groups. They can be thought of
as labels rather than folders (which are an independent filter.)

For examples, you may use annotations such as @group
acceptance (for Selenium-based tests); @group functional (for
tests which do not exercise a single unit and, hence, are a bit
slower to run), and @group ticket-42 (for the tests regarding a
particular bug fix).

The command used to filter tests of a particular group
is *phpunit --group*, which will be treated later in the
command line section. However, you can also filter groups in
the XML configuration.

@runTestsInSeparateProcesses
This too is a test case annotation. It is not diffused and should
be used only for special case tests. It runs tests in different
executions of the *php* command, so that they do not affect
each other. This mechanism can be useful when testing
something related to autoloading or a similar necessary global
state. For example, you may be testing that the autoloader
loads the same class multiple times under different conditions,
and this can only be done in different processes.

<?php
/**
 * @group acceptance
 * @group someOtherGroup
 */
class AnnotationsTest extends PHPUnit_Framework_TestCase
{
 public static function dataToFeed()
 {
 return array(
 array(1, 2, 3),
 array(4, 2, 6),
 array(10, 12, 22)

);
 }

 /**
 * @dataProvider dataToFeed
 */
 public function testSumOperatorsWorksCorrectly($a, $b, $total)
 {
 $this->assertEquals($total, $a + $b);
 }

 public function testFails()
 {
 $this->fail(‘I fail in order to stop my dependent test from
running.’);
 }

 /**
 * @depends testFails
 */
 public function testIAmDependent()
 {
 $this->fail(‘I would fail too, but I\’m not run.’);
 }

 /**
 * @expectedException Exception
 * @expectedExceptionCode 400
 * @expectedExceptionMessage This is the message
 */
 public function testRaisesException()
 {
 throw new Exception(‘This is the message’, 400);
 }
}

Test Doubles
Test Doubles are substitutes for real objects that you don’t
want to involve in your tests. By injecting Test Doubles in
your System Under Test, you can effectively isolate it from the
rest of the system and let it call its collaborators without null
checks. You can also define what the Test Doubles expect as
method parameters, or what they should return.

The taxonomy of Test Doubles comprehends:

Pattern Meaning

Dummies Objects that exist only to satisfy type hints and runtime checks. They are passed
around but no methods are called on them.

Stubs Objects that return canned results when their methods are called.

Mocks Stubs that can also check what parameters are passed to them.

Fakes Real implementations of collaborators, but much more lightweight than the
real object.

PHPUnit offers support for automatic generaton and
instantiation of Dummies, Stubs, and Mocks. It subclasses the
defined class, overrides methods and eval() the resulting code.
In PHPUnit, Mock is used as an umbrella term covering any
Test Double category.

The getMock() or getMockBuilder() methods can be called to
obtain the mock, or a Builder implementation over the mock
itself. They accept an interface or a concrete class as the first
argument. getMockForAbstractClass is the equivalent of
getMock() for this special case.

Hot
Tip

I contributed getMockBuilder() to provide a cleaner way
for complex mock instantiation, which usually requires
calls with 7 arguments to getMock(). It provides a fluent
interface with different methods to set the creation options
one by one, prior to creating the mock.

Once you have a mock, you can perform the expects() call on
it to create an expectation object. The expectation object then
presents different methods which provide a fluent interface:

Method Effect

method() Defines the name of the method it refers to.

with() Specifies assertions to make on the parameters passed. In the simplest cases,
you call it with the value you would use to call the method, in the identical order.

will() Defines the behavior of the overridden method as traits such as what to return or
whether to throw an exception.

Here is a test case which covers many instances of stubs and
mocks usage:

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5 PHPUnit: Professional Test Driven Development

<?php
class TestDoublesTest extends PHPUnit_Framework_TestCase
{
 public function testInstantiatesADummy()
 {
 $dummy = $this->getMock(‘stdClass’);
 $this->assertInstanceOf(‘stdClass’, $dummy);
 }

 public function testInstantiatesAStub()
 {
 $stackStub = $this->getMock(‘SplStack’);
 $stackStub->expects($this->any())
 ->method(‘pop’)
 ->will($this->returnValue(42));

 $this->assertEquals(42, $stackStub->pop());
 }

 public function testSetsUpAStubMethodWithACallback()
 {
 $callback = function($argument) {
 $map = array(
 ‘key’ => ‘value’,
 ‘otherKey’ => ‘otherValue’
);

 return $map[$argument];
 };

 $stackStub = $this->getMock(‘SplStack’);

 // don’t ask me why a Stack has getter and setters
 // I use it only because of its availability
 $stackStub->expects($this->any())
 ->method(‘offsetGet’)
 ->will($this->returnCallback($callback));
 $this->assertEquals(‘value’, $stackStub->offsetGet(‘key’));
 }

 /**
 * @expectedException InvalidArgumentException
 */
 public function testThrowsAnException()
 {
 $stackStub = $this->getMock(‘SplStack’);
 $stackStub->expects($this->any())
 ->method(‘push’)
 ->will($this->throwException(new
InvalidArgumentException));

 $stackStub->push(42);
 }

 public function testInstantiatesAMockAndPutExpectationOnAParameter()
 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->once())
 ->method(‘push’)
 ->with(42);

 $stackMock->push(42);
 }

 public function
testInstantiatesAMockAndPutExpectationOnMultipleParameters()
 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->once())
 ->method(‘offsetSet’)
 ->with(2, 42);

 $stackMock->offsetSet(2, 42);
 }

 public function
testInstantiatesAMockAndPutExpectationsOnParametersDifferentFromEqualTo()
 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->once())
 ->method(‘offsetSet’)
 ->with($this->anything(), $this->identicalTo(‘42’));

 $stackMock->offsetSet(2, ‘42’);
 }

 public function
testInstantiatesAMockAndPutOtherExpectationsOnParameters()
 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->once())
 ->method(‘offsetSet’)
 ->with($this->isType(‘int’), $this-
>isInstanceOf(‘stdClass’));

 $stackMock->offsetSet(2, new \stdClass);
 }

 public function
testInstantiatesAMockAndPutYetOtherExpectationsOnParameters()
 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->once())
 ->method(‘offsetSet’)
 ->with($this->lessThan(3), $this->isTrue());

 $stackMock->offsetSet(2, true);
 }

 public function testCallsAMockTwice()
 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->exactly(2))
 ->method(‘push’);

 $stackMock->push(23);
 $stackMock->push(42);
 }

 public function testShouldNotCallAMock()

 {
 $stackMock = $this->getMock(‘SplStack’);
 $stackMock->expects($this->never())
 ->method(‘push’);

 // this would fail

 // $stackMock->push(42);
 }

 /**
 * Each call on the MockBuilder apart from getMock() is optional.
 */
 public function testInstantiatesAMockUsingBuilder()
 {
 $arrayIteratorMock = $this->getMockBuilder(‘ArrayIterator’)
 ->setMethods(array(‘current’, ‘next’))
 ->disableOriginalConstructor()
 ->disableOriginalClone()
 ->getMock();
 }
}

COMMAND LINE USAGE

The phpunit script is the main means to run PHPUnit-based
test suites, even if there are ways to bypass it like Phing (http://
phing.info/trac/) tasks for purposes of Continuous Integration.

Knowing how to use *phpunit* effectively is therefore crucial to
leverage your test suite power. These are the various options
available to modify its behavior:

Switch Effect

--configuration <file>,
--no-configuration

Includes a phpunit.xml file different from the one in the working
directory or excludes its automatic recognition.

--coverage-html
<directory>

Generates an HTML report on code coverage in the specified folder.
The xdebug extension is required for code coverage to be collected
and the test execution will be much slower.

--colors Specifies to use colors in the output as a nice way to visualize the
test success.

--bootstrap <file> Defines a PHP file to include before starting the test suite execution.
It is included also in the configuration from some releases.

--filter Lets you filter test methods that match the passed pattern. You
won’t have to comment on the other tests when you want to focus
on a single one.

--group Filters the tests defined by the current suite and runs only the
ones in the specified group.

--exclude-group Runs all the tests except the ones in the chosen group.

--list-groups Shows all the groups available for running independently.

--include-path Sets a particular include_path ini directive for running the test.

-d key=value Sets a php.ini value (temporarily).

--verbose Displays a list of test case names as the execution goes along, so
that you can catch errors during long run just when they happen,
instead of waiting for the whole test suite to finish.

--version Displays current version of PHPUnit. Handy to know, since running it
without parameters starts the whole test suite. -v is not supported.

--testdox Generates a “kind” of Agile documentation from the test names.
If you write test names well, it documents what your class or
component under test does for a living.

CONFIGURATION

PHPUnit supports configuration of the test suite via an XML file
that can be stored under version control. Common options like
bootstrap files, logging formats or filters can be saved in this
file instead of being passed with each PHPUnit command.

PHPUnit looks for phpunit.xml and phpunit.xml.dist, which are
assumed to be present in the working directory. Usually one of
them is kept in the test suite root directory.

Hot
Tip

The common practice is to store phpunit.xml dist in the
source control system and ignore phpunit.xml, so that
users can personalize their run if they do not have the
tools for running all tests available (such as Selenium or
staging http servers).

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Windows Phone 7
CSS3
WebDriver
REST

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

6 PHPUnit: Professional Test Driven Development

It can also be the case that you do not want to run slow
integration tests sometimes. With a phpunit.xml.dist present
however, you will be able to run tests just after a checkout.

Root element
<phpunit> is the root element. It accepts various attributes
such as “bootstrap”, which specifies a boostrap file to execute
prior to the tests, or “colors”, which prescribes the use of
colors like red and green in the output.

Test suites
The <testsuites> and <testsuite> elements let you group tests
from different folders. They can contain these two elements:

 • <file>, which defines a single PHP file.
 • <directory>, which will include all the tests inside that

directory or a subdirectory. <directory> accepts a suffix
attribute to filter the test case name: by default it is ‘Test’.

Filtering, logging, and more
Inside the configuration, you also have different modifiers
available. You can:

 • Filter tests of a certain <group> to run (or not run) them.
 • Define code coverage inclusion (and exclusion) of files.

The <filter> element refers to code coverage.
 • Log results and statistics in various formats, with the

<logging> element. It may contain various <log> entries,
of various types: coverage-html, coverage-xml, json, tap,
junit, testdox-html, testdox-text.

 • Attach listeners with the <listeners> and <listener>
elements.

 • Configure a Selenium RC server to run acceptance tests,
with the <selenium> and <browser> elements.

<phpunit bootstrap=”/path/to/bootstrap.php”
 colors=”false”>
 <testsuites>
 <testsuite>
 <directory>tests/</directory>
 <file>DoctrineTest.php</file>
 </testsuite>
 </testsuites>

 <groups>
 <include>
 <group>functional</group>
 </include>
 <exclude>
 <group>acceptance</group>
 </exclude>
 </groups>

 <filter>
 <blacklist>
 <directory suffix=”.php”>library/</directory>
 <exclude>
 <file>library/App</file>
 </exclude>
 </blacklist>
 <whitelist>
 <directory suffix=”.php”>application/</directory>
 <file>bootstrap.php</file>
 <exclude>
 <directory suffix=”.php”>application/views</directory>
 </exclude>
 </whitelist>
 </filter>

 <logging>
 <log type=”coverage-html” target=”/tmp/coverage-report-folder” />
 <log type=”junit” target=”/tmp/junit-log.xml” />
 <log type=”testdox-html” target=”/tmp/testdox.html”/>
 </logging>

 <listeners>
 <listener class=”App_Test_FunctionalTestListener” file=”library/App/
Test/FunctionalTestsListener.php”>
 <arguments>
 <string>staging</string>
 </arguments>
 </listener>
 </listeners>

 <selenium>
 <browser name=”Ubuntu-Firefox”
 browser=”*firefox /usr/bin/firefox”
 host=”localhost”
 port=”4444” />
 </selenium>
</phpunit>

Giorgio Sironi is a Bachelor of Computer Engineering and
works as a PHP software architect while continuing his studies
in a Master Program at Politecnico di Milano. During the last
six years he transitioned from his early work as a websites
developer to the creation of web-based applications. He
practices Test-Driven Development every day and believes
in testing as a design tool. Giorgio is an international

speaker at PHP conferences and you may have already heard of him as the
author of the Practical PHP Testing free ebook, or the “Practical PHP Patterns”
series on DZone.

Test-Driven Development (TDD) is now an established
technique for delivering better software faster. TDD is based
on a simple idea: Write tests for your code before you write
the code itself. However, this “simple” idea takes skill and
judgment to do well. Now there’s a practical guide to TDD that
takes you beyond the basic concepts. Drawing on a decade
of experience building real-world systems, two TDD pioneers

show how to let tests guide your development and “grow” software that is
coherent, reliable, and maintainable.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

