
1 Getting Started with JPA 2.0

http://beautyoftheweb.com

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#151
H

T
M

L5
 C

an
va

s

By Simon Sarris

INTRODUCTION TO CANVAS

The HTML <canvas> element allows for on-the-fly creation of graphs,
diagrams, games, and other visual elements and interactive media. It also
allows for the rendering of 2D and 3D shapes and images, typically via
JavaScript.

<canvas id=”canvas1” width=”500” height=”500”></canvas>

<script type=”text/javascript”>
var can = document.getElementById(‘canvas1’);
var ctx = can.getContext(‘2d’);

ctx.fillText(“Hello World!”, 50, 50);
</script>

Canvas is perhaps the most visible part of the new HTML5 feature set,
with new demos, projects, and proofs of concept appearing daily.

Canvas is a very low-level drawing surface with commands for making
lines, curves, rectangles, gradients and clipping regions built in. There is
very little else in the way of graphics drawing, which allows programmers
to create their own methods for several basic drawing functions such
as blurring, tweening, and animation. Even drawing a dotted line is
something that must be done by the programmer from scratch.

Canvas is an immediate drawing surface and has no scene graph. This
means that once an image or shape is drawn to it, neither the Canvas nor
its drawing context have any knowledge of what was just drawn.

For instance, to draw a line and have it move around, you need to do
much more than simply change the points of the line. You must clear
the Canvas (or part of it) and redraw the line with the new points. This
contrasts greatly with SVG, where you would simply give the line a new
position and be done with it.

Hot
Tip

You can visit the evolving specification for Canvas at the WHATWG site:
http://www.whatwg.org/specs/web-apps/current-work/multipage/
the-canvas-element.html.

Browser Support and Hardware Acceleration
Canvas is supported by Firefox 1.5 and later; Opera 9 and later; and
newer versions of Safari, Chrome, and Internet Explorer 9 and 10.

The latest versions of these browsers support nearly all abilities of the
Canvas element. A notable exception is drawFocusRing, which no
browser supports effects.

Hardware acceleration is supported in some variation by all current
browsers, though the performance gains differ. It is difficult to benchmark
between the modern browsers because they are changing frequently, but
so far IE9 seems to consistently get the most out of having a good GPU.
On a machine with a good video card it is almost always the fastest at
rendering massive amounts of images or canvas-to-canvas draws.

Accelerated IE9 also renders fillRect more than twice as fast as the other
major browsers, allowing for impressive 2D particle effects [1]. Chrome
often has the fastest path rendering but can be inconsistent between
releases. All browsers render images and rects much faster than paths or
text, so it is best to use images and rects if you can regardless of which
browsers you are targeting.

Canvas SVG

Support • All modern versions of Chrome,

Safari, Firefox, and Opera have at

least some support. Internet Explorer

9+ has support. Almost all modern

smart phones.

• Internet Explorer 7 and 8 have

limited support through the excanvas

library.

• Rapidly growing in popularity

• SVG support in all modern brows-

ers. Almost all modern smart phones.

Stateful-
ness

• Bitmapped, immediate drawing

surface

• Shapes are drawn and nothing is

remembered about their state.

• Vector-based, retained drawing

surface

• Every drawn shape is a DOM object.

Other
Consider-
ations

• Generally faster

• All event handling and statefulness

must be programmed yourself.

• Canvas will be effectively disabled

(rendering nothing) if scripting is

disabled.

• Generally slower, especially past

10,000 objects.

• Since all SVG elements are DOM

objects, statefulness is built in and

event handling is much easier.

• Easier for a designer to work with,

many programs such as Illustrator can

output SVG

• SVG has built-in support for

animation.

Accessi-
bility

• Difficult to interface with other

DOM objects

• Working with text can be difficult.

• Recreating text-based DOM ele-

ment functionality is strongly advised

against, even in the specification

itself.

• Cannot operate when scripting is

disabled.

• All SVG objects are already DOM

objects.

• Text is searchable by the browser

and web crawlers.

brought to you by...

CONTENTS INCLUDE:
n	 Introduction to Canvas
n	 	Browser Support and Hardware Acceleration
n	 What Canvas Can and Cannot Do
n	 A Comparison with SVG
n	 Canvas Performance
n	 Creating a Canvas and More!

HTML 5 Canvas
 A Web Standard for Dynamic Graphics

http://txt.couchware.com/medias/jump?hid=2159

2 HTML5 Canvas

DZone, Inc. | www.dzone.com

Best suited
for

• Games, fast graphics

• Very large amounts of objects

• Creating high-performance content

• Accessibility oriented content or

text-oriented content

• Easily scalable shapes

• Charts, graphs, and other mostly

static data displays

• Creating interactive content quickly.

What Canvas Can and Cannot Do
The specification advises against using Canvas to render static content.
There are many reasons to not use Canvas if typical image and text
elements will suffice. If scripting is disabled on the client, the Canvas
will be useless. Text drawn on Canvas is not selectable, searchable, or
crawlable by web spiders. For the same reason, Canvas makes web
accessibility more difficult. If you are looking to simply stylize text or round
off the edges of a text area, you should see if the desired effects (such as
shadows or rounded corners) are possible with CSS3 before opting to use
a Canvas.

As of August 2011, Canvas does not look the same on all browsers. The
implementations of anti-aliasing (or not) differ, and other quirks can cause
gradients, text, and scaled objects to look dissimilar. For instance, until a
few months ago, Chrome’s handling of gradients would disregard opacity
and take the last-known non-gradient color’s opacity instead! Both the
specification and implementations of Canvas should be considered
slightly, yet constantly, evolving.

A Comparison with SVG
Canvas is a very flexible drawing surface but may not be appropriate
for all projects. Most immediately relevant when planning a web-app is
browser support. Internet Explorer 7 and 8 only support Canvas through
the excanvas library. Excanvas performance degrades very quickly with
animation, so any animated web-apps that must target Internet Explorer 7
and 8 should not use canvas. Note that excanvas is also no longer under
active development.

The other large difference is the statefulness of each. Canvas is an
immediate drawing surface whereas SVG is retained, meaning that the
DOM remembers every drawn SVG element and each element has a
fully-defined DOM object associated with it, event handlers included.
This makes implementing interactivity with SVG much easier than Canvas,
but it also introduces a large amount of overhead that is unsuitable for
performance-needing applications.

The bottom line is that SVG is easier to program for from the get-go, but
Canvas is more powerful. The decision to use either should rest upon what
platforms you are targeting, how much performance will be needed, what
libraries you wish to use, and ease of development based on your (team’s)
current knowledge and skillset.

For an in-depth comparison, see the IE team’s blog post: http://blogs.
msdn.com/b/ie/archive/2011/04/22/thoughts-on-when-to-use-canvas-and-
svg.aspx

Canvas Performance
While the low-level of Canvas might make development slower, it
outshines the other options when performance is crucial, especially when
there are tens of thousands of objects to load and draw. While having
each SVG object be a DOM object makes events and object modification
easier to code, the overhead involved makes SVG unsuitable for complex,
interactive apps. Creating 10,000 shapes in Canvas is a very fast process,
while creating the same shapes in SVG means creating tens of thousands
of SVG DOM nodes, resulting in a much slower process.

Canvas can be very fast, but it is up to the programmer to keep it that way.
Many of the optimizations that might be taken care of by more advanced
drawing frameworks must be done by the programmer. Speed becomes
important, and any serious Canvas developer should familiarize himself
with the typical concepts of graphics performance, such as invalidations
and viewports.

Additionally, different drawing operations are faster or slower than others,
and different methods of accomplishing the same task can take wildly
different times. I will go over a few of them in the final section.

CREATING A CANVAS

The tag syntax for a Canvas is as follows:

<canvas id=”canvas1” width=”500” height=”500”>
This text is displayed if you do not have a canvas-capable browser.
</canvas>

Note how “width” and “height” are attributes just like “id”. The CSS
width and height are distinct and are not used for sizing the Canvas.

Canvas Attributes

Name/Method Description

width Default 300. Also a tag attribute, sets the width of the Canvas

in pixels.

height Default 150. Also a tag attribute, sets the height of the Canvas

in pixels.

toDataURL([type, ...]) Returns a data:URL for the image in the Canvas.

The first optional argument controls the type of the image to

be returned (e.g., PNG or JPEG). The default is image/png; that

type is also used if the given type isn’t supported. The other

arguments are specific to the type, and control the way that the

image is generated, as given in the table below.

toBlob(callback [, type, ...]) Creates a Blob object representing a file containing the image in

the Canvas and invokes a callback with a handle to that object.

The second optional argument controls the type of the image

to be returned (e.g., PNG or JPEG). The default is image/png;

that type is also used if the given type isn’t supported. The other

arguments are specific to the type, and control the way that the

image is generated, as given in the table below.

This is an extremely new (May 2011) method for getting the

contents of a Canvas. Note that it is also asynchronous.

getContext(in DOMString

contextID, in any... args)

Returns an object that exposes an API for drawing on the Can-

vas. The first argument specifies the desired API. Subsequent

arguments are handled by that API.

Returns null if the given context ID is not supported or if the

Canvas has already been initialized with some other (incompat-

ible) context type (e.g. trying to get a “2d” context after getting

a “webgl” context).

It is important to note that unlike many HTML Elements, width and height
are attributes of the Canvas element itself and not style attributes. Setting
the style width and height of the Canvas will scale the Canvas instead.

State and Transformations

Method Description

save() Pushes the current context state onto the stack.

restore() Pops the top state on the stack, restoring the context to that state.

scale(x, y) Applies a scaling transformation to the current transformation
matrix

rotate(angle) Applies a rotation transformation to the current transformation
matrix. The angle is in radians.

transform(m0, m1, m2,
m3, m4, m5)

Applies the supplied transformation matrix to the current
transformation matrix.

setTransform(m0, m1,
m2, m3, m4, m5)

Replaces the current transformation matrix with the given
transformation matrix.

The transformation matrix is an important part of drawing complex shapes
on Canvas, though complete understanding of how one works is not
immediately necessary. Using the rotate, scale, and translate methods will
modify the matrix. It can be modified directly (but never retrieved) with
transform and setTransform.

http://blogs.msdn.com/b/ie/archive/2011/04/22/thoughts-on-when-to-use-canvas-and-svg.aspx

3 HTML5 Canvas

DZone, Inc. | www.dzone.com

To not interfere with objects drawn after such transformations, save and
restore are typically called before and after each transformed element is
drawn to the Canvas.

While Canvas does not remember shapes and images drawn, it does keep
track of several drawing rules that comprise its state. The methods save
and restore will push or pop the state onto or off of a stack, saving and
restoring not only the transformation matrix, but also the current clipping
region, as well as all of the stateful attributes:

• strokeStyle • lineWidth • miterLimit

• fillStyle • lineCap • shadowOffsetX

• globalAlpha • lineJoin • shadowOffsetY

• shadowBlur • shadowColor • globalCompositeOperation

• font • textAlign • textBaseline

Compositing

Property Description

globalAlpha Gets or sets the alpha value applied to all drawing operations.

Default is 1.0

globalCompositeOp-

eration

Gets or sets the current composite operation. Default is "source-

over".

All drawing operations are affected by the two compositing attributes. In
the following images, a blue square is drawn to represent shapes already
existing on a canvas, then the globalCompositeOperation is set to the
specified value and a red circle is drawn.

In the following, “existing content” is defined as any pixels that were
already drawn and not previously transparent.

globalCompositeOperation

Result Description

source-over

The default. New content is drawn over existing content.

source-in

New content is only drawn where existing content was non-
transparent.

source-out

New content is drawn only where there was transparency.

source-atop

New content is drawn only where its overlap existing content.

destination-over

Opposite of source-over. It acts as if new content is drawn
“behind” existing content.

destination-in

Opposite of source-in. Existing content is drawn only where
new content is non-transparent.

destination-out

Opposite of source-out. Existing content is drawn only where
new content is transparent. Acts as if existing content is drawn
everywhere except the where the new content is.

destination-atop

Opposite of source-atop. New content is drawn, and then old
content is drawn only where it overlaps with new content.

lighter

Where new content overlaps old content, color is determined
by adding the color values.

copy

New content replaces all old content.

xor

New content is drawn where old content is transparent. Where
the content of both old and new are not transparent, transpar-
ency is drawn instead.

Colors and Styles

Method/Property Description

strokeStyle Gets or sets the current style used for stroking shapes. Can be

a string, CanvasGradient or CanvasPattern. The string must be

parsed as a CSS color value.

Once set, changes to the CanvasGradient or CanvasPattern that

was used will reflect upon newly drawn content.

Default is “#00000”

fillStyle Gets or sets the current style used for filling shapes. Follows
the same rules as fillStyle. Default is "#00000".

The CanvasGradient interface defines the methods for creating linear and
radial gradients. Once a gradient is created, stops are placed along it to
define the color distribution. With no stops, the gradient is simply black.

CanvasGradient Methods

Method/Property Description

addColorStop(offset,
color)

Adds a color stop to the gradient at the given offset. The offset

goes from 0 to 1. The color is a string representation of a valid CSS

color value.

context. Creates and returns a CanvasGradient object that represents
a linear gradient that paints along the coordinates given. Is
called on an instance of a Canvas2DContext.

4 HTML5 Canvas

DZone, Inc. | www.dzone.com

CanvasPattern Methods

Method/Property Description

context.
createPattern(image,
repetition)

Creates and returns a CanvasPattern object that uses the given
image and repeats in the directions defined by the repetition
argument.

The first argument must be an Image, a Canvas, or a Video
element.

The allowed values for the second argument are the strings
“repeat”, “repeat-x”, “repeat-y”, and “no-repeat”. The default
is “repeat”.

Like the gradients, this method is called on an instance of a
Canvas2DContext.

Note that the CanvasGradient and CanvasPattern are distinct objects from
the Canvas, but these gradients and patterns can only be created using an
instance of the Canvas2DContext.Example syntax:

// creating a gradient that will display black to white along the linear path
from (0,0) to (0,150)
// where context is an instance of Canvas2DContext
var gradient = context.createLinearGradient(0,0,0,150);
gradient.addColorStop(0, ‘#000000’);
gradient.addColorStop(1, ‘#FFFFFF’);
ctx.fillStyle = gradient; // assignment to the context’s fillStyle

Line Styles

Method/Property Description

lineWidth Gets or sets the width of lines to be drawn. Default 1.0.

lineCap Gets or sets how the end of lines are to be drawn. Valid values
are "butt", "round", and "square". Default "butt".

lineJoin Gets or sets how corners are drawn when two lines meet. Valid
values are "bevel", "round", and "miter”. Default "miter".

miterLimit Gets or sets the current miter limit ratio. Default 10.0.

Three gray lines drawn to the thin black line. From top to bottom, the
lineCap property of each is “butt”, “round”, and “square”.

Three paths, each drawn up to the thin black line and back down. From
left to right, the lineJoin property of each is “miter”, “round”, and
“bevel”.

Shadows

Method/Property Description

shadowColor Gets or sets the color of the shadow. Accepts any valid CSS
color string. Default is transparent black.

shadowOffsetX Gets or sets the X offset. Pushes the shadow farther to the
right. Default 0.

shadowOffsetY Gets or sets the Y offset. Default 0.

shadowBlur Gets or sets the level of blurring effect. The lower the value,
the sharper the edge of the shadow. Default 0.

Shadows are “smart”, emulating the drawn pixels precisely so that if text
is drawn, the shadow will look just as the text does. Additionally, shadows
are not affected by the transformation matrix.

A square drawn with a shadowOffsetX and shadowOffsetY of 15. The
shadow is drawn evenly 15 pixels offset in both axes. To the right is the
same square drawn with the same shadowOffsetX and Y, but the context
was rotated about the square’s center.

This means that if you were to rotate the square 180 degrees, the shadow
would be in the exact same place as if the square were not rotated at
all. There is an advantage to having shadows drawn unaffected by the
transformation matrix. If you draw several objects, some rotated and some
not, you typically want the shadows to all stay in the same direction, giving
the proper illusion of a light-source. If the shadows were affected by the
transformation matrix, it would look as if there is no singular light source
but shadows going in every direction!

Paths

Method/Property Description

beginPath() Erases all current subpaths in preparation for drawing a new
path.

closePath() Closes the subpath by drawing a straight line from the current
point to the initial point.

moveTo(x, y) Creates a new subpath at the given point. Typically used to
place the starting point, or to draw unconnected paths.

lineTo(x, y) Draw a line to the given point.

quadraticCurveTo(cpx,
cpy, x, y)

Draw a quadratic curve with the given control point (cpx, cpy)
to the given point (x, y)

bezierCurveTo(cp1x,
cp1y, cp2x, cp2y, x, y)

Draw a bezier curve described by the two given sets of control
points and a given end point.

arcTo(x1, y1, x2, y2,
radius)

Draw an arc with the given control points and radius, con-
nected to the previous point via a straight line.

arc(in double x, y,
radius, startAngle,
endAngle, [anticlock-
wise])

Draw an arc described by the circumference of the circle de-
scribed by the given arguments, starting at the startAngle and
ending at the endAngle , going in the given direction (default-
ing to clockwise if the last argument is left blank)

rect(x, y, w, h) Add the closed subpath in the shape of a rectangle.

fill() Fills all described subpaths with the current fillStyle.

stroke() Strokes all described subpaths with the current strokeStyle.

Filling a path will fill all of the subpaths of the current path. It fills them
according to the non-zero winding number rule. When a fill is called, all
open subpaths get implicitly closed.

Text and Images

Method/Property Description

font Gets or sets the current font settings. Must be a string that will
be parsed as a CSS font property.

textAlign Gets or sets the text alignment. Possible values are "start",
"end", "left", "right", and "center". Default is "start".

textBaseline Gets or sets the baseline setting. Can be "top", "hanging",
"middle", "alphabetic", "ideographic", or "bottom". Default
is "alphabetic".

fillText(text, x, y, [,
maxWidth])

Fills the given text at a given position using the fillStyle. Note
that the position at the textBaseline.

strokeText(text, x, y, [,
maxWidth])

Strokes the text at a given position using the strokeStyle.

drawImage(image,
dx, dy)

Draws a given image to the context at the given position. See
below.

drawImage(image, dx,
dy, dw, dh)

Draws a given image to the context at the given position, scal-
ing the image to the given width and height.

5 HTML5 Canvas

DZone, Inc. | www.dzone.com

drawImage(image,
sx, sy, sw, sh, dx, dy,
dw, dh)

Draws a section of a given image that is described by the point
and size given by (sx, sy, sw, sh), which is in turn drawn to the
context at the point and size given by (dx, dy, dw, dh).

Drawing and measuring text are among some of the slowest operations
on Canvas, so it is among the first places you should start fiddling around
for more performance. It can often be the case that storing the result
of a drawText in a PNG or a separate in-memory Canvas will improve
performance.

The six different baselines, all drawn on the same Y-value, represented by
the black line. “Alphabetic” shown in red is the default.

All three drawImage functions take either an image, Canvas, or video
element. Even if you never think of your app asdrawing any images onto
your Canvas, these methods can come in very handy. For performance
reasons, you may find yourself making Canvases in memory and drawing
portions of your screen to them or vice versa. If you want a miniature
overlay above your complex Canvas, you can call drawImage on your
Canvas context and pass in its own Canvas to create such a mini-map.

The optional arguments to drawImage allow us to paint a portion of an
image onto the canvas and force it to scale into the width and height dw
and dh.

Pixel Manipulation

Method/Property Description

createImageData(sw, sh) Returns an ImageData object with the given width
and height. The ImageData’s pixels are filled with
transparent black.

createImageData(imagedata) Returns an ImageData object with the same width
and height as the given ImageData. All of the
returned ImageData’s pixels are transparent black.

putImageData(imagedata, dx,
dy,[, dirtyX, dirtyY, dirtyWidth,
dirtyHeight])

Paints a given ImageData onto the Canvas. If a
“dirty” rectangle is provided, only the pixels from
that rectangle are painted.

The pixels painted by putImageData are precise; globalAlpha and
globalCompositeOperation are not taken into account during their
painting. Because of this, you do not want to use putImageData to paint
part of a Canvas to another Canvas as the transparent region will be
carried over, clobbering whatever was there before.

Another reason to always consider drawImage before using putImageData
is the performance difference. Working with ImageData is very slow
compared to calls to drawImage, so only use it if you absolutely need to
do per-pixel operations (such as making an eyedropper tool).

Also note that the optional “dirty” rectangle arguments for putImageData
are not implemented on all browsers. If you use it, make sure all browsers
targeted have the functionality.

ImageData Properties

Property Description

width Gets the width of the ImageData object.

height Gets the height of the ImageData object.

data Returns a one-dimensional array containing the data
in RGBA order, as integers in the range 0 to 255.

The ImageData.data property returns an array where each pixel is
represented by four indices. The first pixel’s R, G, B, and Alpha values
are thus indicated by data[0], data[1], data[2], data[3]. The second pixel is
indicated by the indices 4 to 7 and so on. The order of the pixels is from
left to right, top to bottom, just like reading text in left-to-right languages.

TIPS FOR YOUR CANVAS APP

Web developers are no strangers to quirks, and Canvas has its own
laundry list of idiosyncrasies. Below are a few things to keep in mind as
you make Canvas apps.

• There are several valid ways to clear a Canvas, but some are much
faster than others. Below are three common ways with their differences
described:

can.width = can.width;

Setting the Canvas’ width attribute equal to itself will not only clear the
Canvas but also clear the entire state (see State and transformations
section for what this entails). This is useful if you want a full reset, but it is
typically slow.

ctx.clearRect(0, 0, can.width, can.height);

The above merely clears the pixels on the screen; but if the transformation
is not identity, it may not work as intended.

ctx.save();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.clearRect(0, 0, can.width, can.height);
ctx.restore();

This is a good way to clear the Canvas while keeping all the state data
intact. The performance difference between the use of clearRect and
setting Canvas width equal to itself varies wildly between browsers. You
should benchmark often on the platforms you are targeting.

• There are different ways of doing operations that have different
performance effects on different browsers. For example, in the Canvas-
clearing example above, it is always faster to not set Canvas width equal
to itself with the lone exception of Safari 5, in which that method is
two orders of magnitude faster. If you are targeting a specific browser,
especially a phone or tablet, you should be sure to tailor your performance
computations around it.

• In a draw loop, it is often beneficial to try and draw only the objects
that have changed and (perhaps) any objects that intersect their bounds.
However, depending on the application, this is not always the case. If
nothing in the scene has changed, it is of course always the case that
skipping out on drawing entirely is much faster.

• Use requestAnimationFrame on browsers that support it. It will ensure
that animation is not occurring on non-active tabs with Canvas elements,
which can save battery life on phones and tablets.

• Draw and hit test only what is on the screen.

• Hit testing only what is on the screen.

6 HTML5 Canvas

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

• If you are to draw the same background every time, make the
background a PNG and set the Canvas’ style’s “background-image”
attribute.

• Depending on the app, using multiple Canvases atop each other (for
background, foreground, and middle ground) can increase performance.

• Keep as much out of the draw loop as possible and touch DOM objects
as little as possible.

• Minimize the setting of styles. If you know that you are to draw 400,000
blue objects, set the fillStyle to blue only once at the beginning instead of
before each object.

• Always draw images on integer coordinates. If you draw on non-integer
coordinates the browser will have to interpolate the image (sub-pixel anti-
aliasing the whole thing), which is often slower and can sometimes look
quite different. A quick way to make your javascript vars into integers is to
bitwise OR your vars with zero, like so:

ctx.drawImage(yourImage, x | 0, y | 0);

• Drawing images is almost always faster than drawing text or paths. If
you have a repeatedly drawn string or shape that never changes and does
not need to scale, consider making it into an image.

• This will “floor” any 32-bit integer quickly. Beware that when you
bitwise-OR zero a number larger than a 32-bit integer, meaning
2147483648 or higher, you will get junk.

[1]. Any performance notes were based on browsers tested in the set from
Firefox 3.6-7.0, Opera 11.x, IE9, Chrome 12-16 (beta versions), and Safari
5.x. Some of these varied wildly as they progressed. To get up to date
performance stats I suggest creating your own tests using www.jsperf.com.
Remember that simply reading the aggregate results from jsperf are not
useful for cross-browser comparison unless the same hardware is used in
all cases.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Simon Sarris is a core developer for web development
at Northwoods Software. At Northwoods he is
developing a fully-featured diagramming library for
HTML5 Canvas. In his spare time he is an avid game
programmer and hobbyist. His passion for web
development is echoed in his game development

projects as well as his Canvas articles and tutorials. He is among the
top contributors on StackOverflow for Canvas. Recent publications
are on his blog (simonsarris.com).

No matter what platform or tools you use, the
HTML5 revolution will soon change the way you
build web applications, if it hasn’t already. HTML5 is
jam-packed with features, and there’s a lot to learn.
This book gets you started with the Canvas element,
perhaps HTML5’s most exciting feature. Learn
how to build interactive multimedia applications
using this element to draw, render text, manipulate

images, and create animation.

ABOUT THE AUTHOR

150

Resin in the Cloud
Mule iON
Disaster Recovery
Android

http://refcardz.dzone.com

